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Abstract

Compressive strength is a critical property of concrete, influencing its performance
and durability. Accurate prediction is essential for optimizing mix designs and ensur-
ing construction safety. The aim of this study is to evaluate the effect of varying ma-
terial compositions on the mechanical performance of concrete, aiming to assess their
potential as sustainable alternatives in structural applications. This work focuses on
evaluating the 28-day compressive strengths of concrete mixtures that include waste
brick aggregates, with particular attention to its compression strength after 28 days
of curing. Several machine learning models were used to estimate the strength of a
concrete mixture that incorporated crushed brick as a partial or complete replacement
for conventional aggregates. Then, the explainable tool SHapley Additive exPlana-
tions was employed to interpret the models and analyze the contribution of each input
feature to the predictions.
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1 Introduction

The selection of construction materials plays a crucial role in ensuring the structural
integrity, durability, and sustainability of wall systems in modern buildings. Among
these materials, concrete remains a fundamental component due to its versatility and
high compressive strength. However, the growing demand for environmentally re-
sponsible construction practices has led to increasing interest in alternative and supple-
mentary materials. Concrete is extensively utilized as a construction material because
of its robust durability, adaptability, and affordability [S]. A fundamental attribute of
concrete is its compressive strength, which plays a vital role in its capacity to endure
loads and perform efficiently within structural applications. Compressive strength
is a key quality measure for masonry units like blocks. Higher compressive strength
ensures greater reliability in load-bearing applications and long-term stability of struc-
tures [24]. The incorporation of alternative materials, such as crushed brick, aims to
enhance sustainability and reduce construction waste [30]. Traditional strength pre-
diction methods rely on empirical formulas and laboratory testing, which can be time-
consuming and costly. Additionally, variations in material properties, curing con-
ditions, and external environmental factors further complicate the prediction process.
Machine learning (ML) offers a data-driven alternative, enabling accurate and efficient
compressive strength prediction. ML models, when applied to extensive datasets of
concrete mixtures, can discern relationships between input variables and compressive
strength, resulting in quicker and more accurate forecasts [13, 19].

This work focuses on evaluating the effect of varying material compositions on
the mechanical performance of concrete, with particular attention to its compressive
strength after 28 days of curing. Specifically, the study investigates the 28-day com-
pressive strength of concrete mixtures that include waste brick aggregates, aiming to
assess their potential as sustainable alternatives in structural applications. Different
machine learning (ML) techniques were applied to predict the compressive strength
of the mixtures in the selected dataset. Subsequently, SHapley Additive exPlanations
(SHAP) was employed to interpret the models and analyze the contribution of each
input feature to the predictions. Then, the results are interpretable by domain experts,
facilitating a better understanding of the influence of each input parameter on the pre-
dicted compressive strength. The ultimate goal is to develop a web-based application
where users can input the relevant mixture parameters and obtain a prediction of the
compressive strength.

The remainder of this paper is structured as follows. An overview of the data
collected and modeled is provided in Section 3. Section 4 presents the methodology
employed in this study. The results are then discussed in Section 5. Finally, the main
conclusions and contributions of the work are summarized in Section 6.



2 State of the art

This section presents a summary of ML methods used to predict the compressive
strength of concrete when crushed brick partially or fully replaces standard aggre-
gates. Initially, prevalent trends in concrete strength forecasting are discussed using a
bibliometric analysis [22]. Traditional and ML-based methods exist, becoming more
popular because of their ability to model intricate input-output relationships in con-
crete characteristics.

For example, the work by [32] aimed to predict compressive strength, flexural
strength, and slump based on mix composition, using data from an Spanish company,
Cementos Argos S.A., over five years. Models such as XGBoost and neural networks
were applied. The study showed that ML can optimize concrete mix design, improv-
ing performance and reducing costs. Additionally, the authors in [14] used ML for
material characterization, finding that random forests outperformed other models.

ML approaches have also been applied to sustainable materials like Compressed
Earth Blocks (CEB). In [25], classification models were trained to predict CEB com-
pressive strength. After, SHAP analysis was used to identify compaction pressure
and soil granularity as key factors. In addition, authors in [28] applied ML-based
quality monitoring to CSEBs using cement content, electrical resistivity, and UPV as
input variables, with a dataset of 180 samples. The results highlighted ML’s poten-
tial to improve quality control in sustainable masonry materials. Similarly, the study
in [12] proposed several models, including ANN, GMDH-Combi, and GEP, to esti-
mate the compressive strength of hollow concrete block masonry prisms. The model
was trained and tested with 102 samples, and used inputs such as the height-to-width
ratio of the prisms and the compressive strength of mortar and concrete blocks. Fi-
nally, the study in [21] developed three ML models (DNN, KNN, and SVM) to pre-
dict geopolymer concrete’s compressive strength. The results showed strong accuracy
across all models, with DNN achieving the best performance.

The reviewed studies demonstrate the versatility of ML in predicting concrete com-
pressive strength, improving accuracy while minimizing the need for extensive test-
ing. ML approaches have been successfully applied to traditional concrete [22, 32],
geopolymer concrete [21], and compressed earth blocks [25]. Additionally, ML has
been used to assess the quality of cement-stabilized earth blocks [11] and grouted
masonry [12,28], with ANN models showing strong predictive performance. Ensem-
ble models, such as XGBoost and voting classifiers, exhibit robust predictive power,
while deep learning excels with larger datasets [14]. Feature selection and hyperpa-
rameter tuning, including genetic algorithms [32] or SHAP analysis [25], further en-
hance model interpretability. Overall, ML proves valuable for optimizing mix design,
reducing over-engineering, and advancing material characterization



3 Data collected

The data analyzed in this study were drawn from a series of experimental investiga-
tions reported in the scientific literature, as listed in Table 1.

Reference Year
Pei Ge, Wei Huang, Jiarui Zhang, Wenli Quan, Yuting Guo. Microstructural analysis of | 2022
recycled brick aggregate concrete modified by silane. Structural Concrete [15]
Ksenija Jankovi¢, Dragan Bojovi¢, Dragan Nikoli¢, Ljiljana Loncar, Zoran Romakov. | 2010
Frost resistance of concrete with crushed brick as aggregate. Facta Universitatis [16]
J.M. Khatib. Properties of concrete incorporating fine recycled aggregate. Cement and | 2005
Concrete Research [18]
Paulo B. Cachim. Mechanical properties of brick aggregate concrete. Construction and | 2009
Building Materials [7]
Tara L. Cavalline, David C. Weggel. Recycled brick masonry aggregate concrete. Struc- | 2013
tural Survey [8]
Juntao Dang, Jun Zhao. Influence of waste clay bricks as fine aggregate on the mechanical | 2019
and microstructural properties of concrete. Construction and Building Materials [10]
Syed Ishtiaqg Ahmad, Mohammad Anwar Hossain. Water Permeability Characteristics of | 2017
Normal Strength Concrete Made from Crushed Clay Bricks as Coarse Aggregate. Ad-
vances in Materials Science and Engineering [3]

Alaa Abdeltawab Aboalella, Abeer Elmalky. Use of crushed bricks and recycled concrete | 2023
as replacement for fine and coarse aggregates for sustainable concrete production. Chal-
lenge Journal of Concrete Research Letters [1]

H. Adem, E. Athab, S. Thamer, A.T. Jasim. The behavior of Lightweight Aggregate Con- | 2019
crete Made with Different Types of Crushed Bricks. IOP Conference Series: Materials
Science and Engineering [2]

T. Vieira, A. Alves, J. de Brito, J.R. Correia, R.V. Silva. Durability-related performance | 2016
of concrete containing fine recycled aggregates from crushed bricks and sanitary ware.
Materials & Design [33]

R.Kumutha Rathinam, Kumutha Vijai. Strength of concrete incorporating aggregates re- | 2010
cycled from demolition waste. Journal of Engineering and Applied Sciences [20]
Thab S. Saleh, Saddam Kh Faleh, Ageel H. Chkheiwer. Flexural Behavior of RC Two Way | 2019
Slabs Made With Crushed Melted Bricks as Coarse Aggregate. Springer Nature [27]
Ahmed T. Noaman, Ghassan S. Jameel, Shamil K. Ahmed. Producing of workable struc- | 2021
tural lightweight concrete by partial replacement of aggregate with crushed clay brick
(CCB) aggregate. Journal of King Saud University - Engineering Sciences [26]

Chunlin Su, Jinyan Shi, L.U.D. Tambara Jr, Yuanxia Yang, Baoju Liu, Victor Revilla- | 2024
Cuesta. Improving the mechanical properties and durability of steam-cured concrete by
incorporating recycled clay bricks aggregates. Powder Technology [31]

Farid Debieb, Said Kenai. The use of coarse and fine crushed bricks as aggregate in | 2008
concrete. Construction and Building Materials [11]
Ali A. Aliabdo, Abd-Elmoaty M. Abd Elmoaty, Hani H. Hassan. Utilization of crushed | 2014
clay brick in concrete industry. Alexandria Engineering Journal [4]
Yongcheng Ji, Dayang Wang. Constitutive model of waste brick concrete based on | 2023
Weibull strength theory. Case Studies in Construction Materials [17]

Table 1: Summary of references where the data come from.

These studies encompass a broad range of concrete mixtures incorporating waste
brick aggregates, including both fine and coarse fractions, and explore their mechan-
ical behavior under various conditions. The primary focus is on the 28-day compres-
sive strength — a widely accepted benchmark for assessing the structural performance
of concrete. The selected publications span nearly two decades (2005-2024) and
reflect diverse experimental designs, geographical contexts, and methodological ap-
proaches. Collectively, they provide a comprehensive overview of how recycled brick
materials influence the strength development of concrete and offer valuable insights
into the potential of such materials for sustainable construction practices.



The data collected for this study consists of 156 samples, each containing eight fea-
tures, with seven input attributes and the target value (28-day compressive strength).
Six of the input attributes are numerical, while one is categorical. The input attributes
are described as follows, and a brief statistical overview of the data collected is pre-

sented in Table 2.

Water to Cement Ratio: This numerical variable represents the ratio of water
to cement used in the mixture, which plays a critical role in the hydration process
and overall strength development.

Cement Content (kg/m?3): The amount of cement in the mix, expressed in kilo-
grams per cubic meter. Cement content is a key factor influencing the compres-
sive strength of concrete.

Fine Aggregate (Natural + Waste Bricks) (kg/m?): The amount of fine aggre-
gate in the concrete mix, which includes both natural and recycled waste bricks,
measured in kilograms per cubic meter.

Coarse Aggregate (Natural + Waste Bricks) (kg/m?3): The quantity of coarse
aggregate in the mix, similarly consisting of both natural and recycled waste
bricks.

Waste to Natural Fine Aggregate Ratio: The ratio of recycled waste to natural
fine aggregate in the mix, influencing the overall properties of the concrete.

Waste to Natural Coarse Aggregate Ratio: The ratio of recycled waste to
natural coarse aggregate, which impacts the material’s structural integrity.

Type of the Sample: A categorical variable that classifies the shape of the sam-
ple (cube 100, cube 150, or cylinder), which affects the curing process and

strength testing.

Parameter Min | Max | Mean | Std.
Water to Cement Ratio 0.3 1.08 0.53 0.14
Cement [kg/m3] 250 | 514 | 382.65 | 64.74
Fine Aggregate (Natural + Waste Bricks) [kg/m3] 506 | 960 | 695.77 | 89.85
Coarse Aggregate (Natural + Waste Bricks) [kg/m3] || 480 | 1309 | 992.70 | 200.32
Waste to Natural Fine Aggregate Ratio 0 1 0.22 0.33
Waste to Natural Coarse Aggregate Ratio 0 1 0.45 0.45
Compressive Strength [MPa] 11.05 | 67.50 | 32.39 | 12.90

Table 2: Summary statistics of the collected data.

The target variable in this study is the Compressive Strength of the samples, mea-
sured in megapascals (MPa) after 28 days of curing. This is a standard measure used
in the concrete industry to assess the load-bearing capacity of concrete and determine

its suitability for various structural applications.




4 Methods

A variety of approaches were employed to model the relationship between the input
attributes and the target variable, compressive strength. Three tree-based machine
learning (ML) models were used to attempt to model the relationship between the
input attributes and the target variable (compressive strength). These approaches in-
cluded Decision Tree (DT), Random Forest (RF) [6], and Extreme Gradient Boosting
(XGB) [9].

One hot encoding was used for the categorical input variable (Sample Type). 80%
of the data was randomly selected to serve as the training dataset and the remaining
20% was used as the test dataset. In this split, the data was split in a stratified manner
to ensure, as far as possible, the same proportion of Sample Type data in both datasets.

A SHAP (Shapley Additive ExPlanations) [23] analysis was also performed on
each of the models created to determine how each input attribute or feature affected
the output of the model. SHAP is grounded in Shapley values from cooperative game
theory [29]. Shapley values quantify the marginal contribution of each feature by
considering all possible subsets of features, thereby offering both local and global
interpretability.

Formally, given a model f and input features X, the Shapley value ¢; for feature
x; represents the average contribution of that feature to the prediction f(X), across all
subsets S C X \ {z;}, as expressed in Eq. I:

o= ¥ BHEIZEEDR s 0 - sis) 0
SCX\{z:} '

To obtain a robust estimate of feature importance, SHAP averages the Shapley

values across multiple permutations, as shown in Eq. 2, where M is the number of
permutations and gbﬁi is the Shapley value for feature x; in permutation k:

1 M
o) = 77 2_9L() 2)
k=1

This method not only highlights the most relevant features but also quantifies their
overall contribution to the model’s predictions.

5 Results

The results obtained using the optimal configurations for each of the tree-based re-
gression models, as well as the results of the SHAP analysis, are presented in this
section.



5.1 ML models

As mentioned in Section 4, the ML models implemented were DT, RF, and XGB. In
order to determine the most suitable structure of the model, hyperparameter tuning was
performed using grid search. The list of model parameters, the corresponding possible

values, as well as the values obtained for the optimal configuration are provided in
Tables 3, 4 and 5.

Table 3: List of configuration parameters for Decision Tree model.

Parameter name

Brief description

Possible values of
parameters considered

Parameter values for
optimal configuration

max_-depth the maximum depth of each tree (3, 5, 10, None) 10
min_samples_split | the minimum number of samples (2,5,10) 2
required to split an internal node
min_samples_leaf the minimum number of samples (1,2,4) 2
required to be at a leaf node
max_features the number of features to consider (None, ‘sqrt’, ‘log2’) ‘sqrt’
when looking for the best split, i.e.,
when splitting a node
Table 4: List of configuration parameters for Random Forest model.

Parameter name

Brief description

Possible values of
parameters considered

Parameter values for
optimal configuration

n_estimators
max-depth
min_samples_split

min_samples_leaf

max _features

the number of trees in the forest
the maximum depth of each tree
the minimum number of samples
required to split an internal node
the minimum number of samples
required to be at a leaf node

the number of features to consider
when looking for the best split, i.e.,
when splitting a node

(5,10,15)

(3, 5, 10, None)
(2,5,10)

(1,2,4)

(None, ‘sqrt’, ‘log2’)

5
10
2
1

‘log2’

Table 5: List of configuration parameters for XGBoost model.

Parameter name

Brief description

Possible values of
parameters considered

Parameter values for
optimal configuration

max_-depth
learning_rate

n_estimators
subsample

colsample_bytree

the maximum depth of each tree
the learning rate used to weight
each model

the number of trees in the ensemble
the fraction of samples (rows) used
in each tree

the fraction of features (columns)
used in each tree

(3, 5, 10, None)
(0.01, 0.1, 0.2)

(100, 200, 300)
(0.8,0.9, 1.0

(0.8,0.9, 1.0

3
0.1

200
0.9

0.9

The results of the ML models on the test data set are provided in Table 6. Based
on the performance of the models obtained during training, the best model was XGB
followed by RF and then DT. However, this order is reversed when the results of
the performance of the models on the test dataset are analyzed (Table 6). Based on
this, it can be concluded that the more complex the model, the better the results on the
training set and the poorer the results on the test set. In other words, the more complex



models seem to overfit on the training set, leading to poor generalization capabilities
on the test data set. Hence we decided to use the DT model.

Table 6: ML models performance.

Model | MSE | MAE | R?
DT 22.28 | 341 | 0.88
RF 31.59 | 3.58 | 0.82
XGB 37.96 | 4.02 | 0.79

5.2 [Explainable AI: SHAP

The SHAP method is employed to evaluate the contribution of each input attribute
or parameter to the model’s predictions. SHAP enables both global and local inter-
pretability of the model. On a global level, feature importance values derived from
SHAP indicate the overall impact of each feature across all predictions. These are
typically visualized in a bar plot, where features are ranked from highest to lowest
according to their influence on the model output. In contrast, local feature contribu-
tions are illustrated using a beeswarm plot, where each point represents an individual
data instance. This plot not only preserves the ranking of features by their effect on
the model but also shows how high or low values of a given feature influence the
prediction. Additionally, the distribution of SHAP values for each feature can be fur-
ther explored using violin plots, which provide a complementary perspective on the
variation and density of local explanations.

If we ignore the attributes sample type_cubel00, sample type_cubel50 and sam-
ple type_cylinder obtained as a result of performing one hot encoding on the attribute
Sample Type while analysing the results of the SHAP analyses performed using the
DT model, it can be concluded that the attributes cement and waste to coarse ag-
gregate ratio are the most important. These are followed by the attributes coarse
aggregate, water to cement ratio and fine aggregate. The least important attribute
is the waste to fine aggregate ratio. Higher cement values have a positive impact on
the compressive strength, whereas higher values of waste to coarse aggregate ratio
have a negative impact on the compressive strength.

6 Conclusions and contributions

In this study, the influence of different material compositions, in particular the ad-
mixture of brick waste aggregates, on the 28-day compressive strength of concrete
was successfully investigated. By applying three tree-based machine learning mod-
els (Decision Tree, Random Forest and Extreme Gradient Boosting), the potential of
data-driven approaches to accurately predict this important mechanical property was
demonstrated. While XGBoost performed best on the training data, the decision tree
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stance.

High
cement

waste to coarse aggregate ratio
coarse aggregate

water to cement ratio

fine aggregate

Feature value

sample type_cylinder
sample type_cubel50
waste to fine aggregate ratio

sample type_cubelQ0

20 10 0 10 20
SHAP value (impact on model output)
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Figure 1: Visualizations based on SHAP values for the DT model: (a) Feature impor-
tance ; (b) Beeswarm plot; and (c) Violin plot.
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model showed superior generalisation capabilities on the unseen test dataset with an
MAE of 3.41 and a determination coefficient R? of 0.88.

The application of SHAP analysis (Figure 1) provided valuable insight into the
effects of each input feature on the predicted compressive strength. The analysis re-
vealed that cement content had a significant positive correlation with compressive
strength, while a higher ratio of waste to coarse aggregate had a notable negative im-
pact.

The study demonstrates the effectiveness of machine learning, in particular the de-
cision tree algorithm, for accurately predicting the compressive strength of concrete
using recycled materials.The use of SHAP analysis improves the interpretability of
the developed ML models and enables a better understanding of the complex rela-
tionships between the parameters of the concrete mix and the resulting strength. This
interpretability is crucial for practical application and acceptance by experts.

Acknowledgements

This work presents part of the research activities within the project 2023-1-HRO1-
KA220-HED-000165929 “Intelligent Methods for Structures, Elements and Materi-
als” [https://im4stem.eu/en/home/] co-funded by the European Union under the pro-
gram Erasmus+ KA220-HED - Cooperation partnerships in higher education. The
authors would like to thank the Spanish Ministry of Science and Innovation for the
support within the projects PID2020-117954RB-C21 and PID2023-1460370B-C22
funded by MICIU/AEI/ 10.13039/501100011033.

References

[1] A. Aboalella, A. Elmalky, Use of crushed bricks and recycled concrete as re-
placement for fine and coarse aggregates for sustainable concrete production.
Challenge Journal of Concrete Research Letters, [S.1.], 14/2, 39-46, 2023.

[2] H. Adem, E. Athab, S. Thamer, A.T. Jasim The behavior of Lightweight Aggre-
gate Concrete Made with Different Types of Crushed Bricks. IOP Conf. Series:
Materials Science and Engineering 584, 012040, 2019.

[3] S.I Ahmad, M.A. Anwar Hossain, Water Permeability Characteristics of Nor-
mal Strength Concrete Made from Crushed Clay Bricks as Coarse Aggregate.
Advances in Materials Science and Engineering, 2017.

[4] A.A. Aliabdo, M. Abd Elmoaty, H.H. Hassan, Utilization of crushed clay brick
in concrete industry, Alexandria Engineering Journal, 53, 151-168, 2014.

[5S] EM. Bartlett and J.G. MacGregor. Statistical analysis of the compressive
strength of concrete in structures. Materials Journal, 93(2):158-168, 1996.

[6] L. Breiman, Random forests. Machine learning, 45, 5-32, 2001.

[7] P.B. Cachim, Mechanical properties of brick aggregate concrete, Construction
and Building Materials, 23/3, 1292-1297, 2009.

10



[8] T.L. Cavalline, D.C. Weggel, Recycled brick masonry aggregate concrete. Struc-
tural Survey, 31 Issue 3, 160-180, 2013.

[9] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 785-794, 2016.

[10] J. Dang, J. Zhao, Influence of waste clay bricks as fine aggregate on the me-
chanical and microstructural properties of concrete. Construction and Building
Materials, 228, 11675, 2019.

[11] F. Debieb, S. Kenai, The use of coarse and fine crushed bricks as aggregate in
concrete, Construction and Building Materials, 22, Issue 5, 886-893, 2008.

[12] P. Fakharian, D.R. Eidgahee, M. Akbari, H. Jahangir, and A. Taeb. Compressive
strength prediction of hollow concrete masonry blocks using artificial intelli-
gence algorithms. In Structures, volume 47, pages 1790-1802. Elsevier, 2023

[13] D.C. Feng, Z. Liu, X. Wang, Y. Chen, J. Chang, D. Wei, and Z.M. Jiang. Ma-
chine learning-based compressive strength prediction for concrete: An adaptive
boosting approach. Construction and Building Materials, 230:117000, 2020.

[14] B. Gallagher, M. Rever, D. Loveland, T.N. Mundhenk, B. Beauchamp, E.
Robertson, G.G. Jaman, A.M. Hiszpanski, and T.Y.J. Han. Predicting compres-
sive strength of consolidated molecular solids using computer vision and deep
learning. Materials & Design, 190:108541, 2020.

[15] P. Ge, W. Huang, J. Zhang, W. Quan, Y. Guo, Microstructural analysis of re-
cycled brick aggregate concrete modified by silane. Structural Concrete; 23:
2352-2364, 2022. https://doi.org/10.1002/suco0.202100144.

[16] K. Jankovié, D. Bojovié, D. Nikolié, L. Loncar, Z. Romakov, Frost resistance of
concrete with crushed brick as aggregate. Facta Universitatis - Series: Architec-
ture and Civil Engineering, 8, Issue 2, 155-162, 2010.

[17] Y. Ji, D. Wang, Constitutive model of waste brick concrete based on Weibull
strength theory, Case Studies in Construction Materials, 18, 2023.

[18] J.M. Khatib, Properties of concrete incorporating fine recycled aggregate, Ce-
ment and Concrete Research, 35, Issue 4, 763-769, 2005.

[19] A. Kumar, H.C. Arora, N.R. Kapoor, M.A. Mohammed, K. Kumar, A. Majum-
dar, and O. Thinnukool. Compressive strength prediction of lightweight con-
crete: Machine learning models. Sustainability, 14(4):2404, 2022.

[20] R. Kumutha, V. Kumutha, Strength of concrete incorporating aggregates recy-
cled from demolition waste. Journal of Engineering and Applied Sciences, 5/5,
2010.

[21] Q. Le, D. Nguyen, T. Sang-To, S. Khatir, H. Le-Minh, A.H. Gandomi,
and T. Cuong-Le. Machine learning based models for predicting compressive
strength of geopolymer concrete. Frontiers of Structural and Civil Engineering,
18(7):1028-1049, 2024

[22] D. Li, Z. Tang, Q. Kang, X. Zhang, and Y. Li. Machine learning-based method
for predicting compressive strength of concrete. Processes, 11(2):390, 2023

[23] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions.
Proceedings of the 30th International Conference on Neural Information Pro-

11



[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

cessing Systems (NeurIPS), 4765-4774, 2017.

J.C. Morel, A. Pkla, and P. Walker. Compressive strength testing of compressed
earth blocks. Construction and Building materials, 21(2):303-309, 2007.

S. Nassar, C. Baudrit, J. Saliba, and N. Saiyouri. Predicting compressed earth
blocks compressive strength by means of machine learning models. Construction
and Building Materials, 447:138135, 2024.

A.T. Noaman, G.S. Jameel, S.K. Ahmed, Producing of workable structural
lightweight concrete by partial replacement of aggregate with yellow and/or red
crushed clay brick (CCB) aggregate, Journal of King Saud University - Engi-
neering Sciences, 33/4, 240-247, 2021.

L.S. Saleh, S.K. Faleh, A.H. Chkheiwer, Flexural Behavior of RC Two Way Slabs
Made With Crushed Melted Bricks as Coarse Aggregate. Springer International
Publishing AG, part of Springer Nature 2019 H. Khabbaz et al. (eds.), New
Prospects in Geotechnical Engineering Aspects of Civil Infrastructures, Sustain-
able Civil Infrastructures.

N. Sathiparan and P. Jeyananthan. Predicting compressive strength of cement-
stabilized earth blocks using machine learning models incorporating cement con-
tent, ultrasonic pulse velocity, and electrical resistivity. Nondestructive Testing
and Evaluation, 39(5):1045-1069, 2024.

Shapley, L. S., A value for n-person games. Princeton University Press, 1953.
R.V. Silva, J.M.C.L. de Brito, and R.K. Dhir. The influence of the use of recycled
aggregates on the compressive strength of concrete: A review. European Journal
of Environmental and Civil Engineering, 19(7):825-849, 2015.

C. Su, J. Shi, L.U.D. Tambara Jr, Y. Yang, B. Liu, V. Revilla-Cuesta, Improving
the mechanical properties and durability of steam-cured concrete by incorporat-
ing recycled clay bricks aggregates from C&D waste, Powder Technology 438,
119571, 2024.

J.F. Vargas, A.I. Oviedo, N.A. Ortega, E. Orozco, A. Gémez, and J.M. Londo™no.
Machine-learning-based predictive models for compressive strength, flexural
strength, and slump of concrete. Applied Sciences, 14(11):4426, 2024.

T. Vieira, A. Alves, J. de Brito, J.R. Correia, R.V. Silva, Durability-related per-
formance of concrete containing fine recycled aggregates from crushed bricks
and sanitary ware, Materials & Design, 90, 767-776, 2016.

12





