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Abstract 
 

This research proposes the extension of the Proper Orthogonal Decomposition (POD) 

method to reinforced concrete (RC) structures with material nonlinearities subjected 

to earthquakes, aiming to reduce the numerical cost of dynamic time history analysis. 

The approach involves reducing the structural model by projecting it onto the 

dominant POD modes. Material nonlinearity in RC structures, caused by steel 

ductility and concrete damage, is modelled using the multi-fiber section technique. 

Two reduction models are presented. The first is for a single base excitation: a full 

nonlinear analysis is performed on an initial small-duration earthquake segment, and 

the dominant POD modes are extracted. These modes are then used to reduce the 

dynamic model for the remaining earthquake duration. The second technique 

addresses multiple earthquakes: a complete analysis for one selected event identifies 

the dominant POD modes, which are then applied to reduce the model for subsequent 

earthquake analyses. The reduced models deliver results comparable to full models 

while significantly decreasing computational time (up to 96% reduction). This study 

demonstrates that the POD method effectively reduces the numerical cost of dynamic 

time history analysis for RC structures with nonlinearities under seismic loading. 
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1  Introduction 
 

An extension of the Proper Orthogonal Decomposition method (POD) to nonlinear 

dynamic analysis of reinforced concrete multistory frame structures is shown in this 

study. The multi-fiber section is used to simulate the material nonlinearity. 

The cross section of the structural element is divided into a number of longitudinal 

fibers for the multi-fiber section model. According to the uniaxial stress-strain 

behavior of its corresponding material, each fiber, which is composed of a single 

material, has the ability to exhibit nonlinear inelastic longitudinal deformation [1]. It 

is recommended to use nonlinear solving methods when dealing with nonlinearities. 

The Newton-Raphson method and its derivatives, the displacement control approach, 

and the arc length technique are the traditional and most often used nonlinear solvers. 

 

Dynamic excitations in structures are usually studied using direct integration time 

history analysis. In this approach, temporal discretization is considered and the direct 

time integration is conducted using implicit methods like Newmark- 𝛽 [2], Wilson 𝜃 

[3], HHT- 𝛼  [4] or explicit methods like central difference and Runge-Kutta. The 

main concern in using the direct time integration analysis for linear and nonlinear 

models is its high computational cost especially when applied in structural seismic 

analysis. In fact for seismic analysis, the structure is subjected to dynamic excitations 

at its base. These excitations are generally based on the accelerograms of previously 

recorded quakes in the region. In order to cover all probable scenarios, the structure 

should be subjected to multiple accelerograms vibrating in all different directions 

which greatly increases the time cost of this analysis technique. 

 

In order to reduce the time cost of the dynamic time history analysis, a number of 

model reduction strategies have been proposed as a result of this setback. For linear 

systems, modal truncation can be used to define the most influential mode shapes of 

the structure and then this truncated modal base is used to reduce the dynamic equation 

of the structural system [5, 6]. Research has been done to find an analogy between 

nonlinear and linear normal modes for nonlinear structures, based on the work of [7]. 

However, because of its limitations when non-smooth nonlinearities are present in the 

structure, this nonlinear modal analysis is not commonly applied [8]. 

 

The Proper Orthogonal Decomposition (POD) is a data driven method based on the 

statistical Principal Component Analysis (PCA) of observations dataset. In other 

words, the best subspace for reproducing the complete dataset with the fewest possible 

errors is identified by analyzing data gathered from observations at various time 

intervals (snapshots). This subspace is later used to reduce the model under 

consideration in calculation. Since the 1930s, the POD approach has been used in fluid 

mechanics to reduce fluid flow models, reduce structural dynamics models, identify 

damage, reduce dynamic models for microelectromechanical systems, and many other 

fields. 
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There are two conventional techniques to conduct seismic analysis of reinforced 

concrete structures that take into account nonlinear material behaviour. The first is the 

pushover analysis, a static nonlinear technique that tries mimicking the dynamic 

behavior of the structure by considering it to respond dynamically according to its 

fundamental mode shape only. As nonlinear material behavior is taken into 

consideration, horizontal loads are gradually increased and distributed on the structure 

according to this fundamental mode shape vector.  This method is only applicable to 

normal low-rise buildings where the fundamental mode shape is the predominant 

mode of vibration and no response in function of time is needed (only maximum 

values are given). In other situations, the direct integration nonlinear time history 

analysis described above is applied. 

The POD method has never been employed, as far as the authors are aware, to reduce 

the direct integration nonlinear time history analysis of a Reinforced Concrete (RC) 

structure, where the multi-fiber section approach is used to describe material 

nonlinearity. This study investigates a nonlinear multi-fiber RC multistory frame 

structure subjected to seismic excitations at its base. To reduce the computational cost 

of the direct integration time history analysis, the Proper Orthogonal Decomposition 

(POD) method is applied. In Section 2, the nonlinear material behavior of a RC beam 

element is modeled using the multi-fiber section approach. Section 3 focuses on the 

dynamic analysis of a RC element with material nonlinearities, comparing the 

classical approach with the reduced POD method. Section 4 demonstrates the 

application of the POD reduction technique to the multistory frame structure and 

compares the outcomes with the full model analysis. Finally, Section 5 concludes the 

study and discusses potential future developments. 

2  Multi-fiber beam model 
 

For modeling material nonlinearity in structural elements, the most straightforward 

and widely used method is concentrated (lumped) plasticity. This method, however, 

is predicated on the premise that nonlinear material behavior only manifests at specific 

concentrated places of the structural member—a significant simplification. 

Furthermore, the interplay between bending moments and fluctuating axial forces at 

the plastic hinge is not considered. Furthermore, characteristic curves (Moment versus 

Rotation or Force vs Displacement) supplied by the seismic codes characterize the 

behavior of plastic hinges. The accuracy of these curves is diminished because they 

are predicated on imprecise predictions and assumptions. However, as we shall 

explain in this section, the multi-fiber beam model ensures that nonlinear material 

behavior is dispersed throughout the cross section and over the length of the structural 

element (distributed plasticity method). Furthermore, this method can be used on 

elements with non-typical cross sections and accounts for the interplay between 

bending moments and axial stresses. Even though the fiber model approach requires 

more computing power than the focused plastic hinge technique, it is still effective 

and highly useful, particularly for wall elements that are modeled using the 

comparable beam approach. The multi-fiber beam approach is used in this work to 

model the nonlinear material in 1D finite elements (beams, columns, equivalent beam 

model for walls) while taking into account the Euler-Bernoulli hypothesis (planar 
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sections before deformation remain planar and perpendicular to the element's center 

line after deformation) because 2D finite elements are not covered in this paper. 

As previously stated, the multi-fiber beam technique entails splitting the cross section 

of the structural element into a number of longitudinal fibers. Consequently, a three-

level analysis is necessary when employing this modeling technique. 

 

The fundamental level of analysis is fibers. The fibers of reinforced concrete members 

are composed of a single substance, which may be either confined or unconfined 

concrete or steel reinforcements.The fiber axial stress 𝜎𝑓𝑖𝑏𝑒𝑟 and the longitudinal 

tangent Young modulus 𝐸𝑇 𝑓𝑖𝑏𝑒𝑟 are determined in function of the longitudinal fiber 

axial strain 𝜀𝑓𝑖𝑏𝑒𝑟. 

 
Figure 1. Multi-fiber reinforced concrete section 

 

The element’s cross section is the second level of analysis. Applying the Euler-

Bernoulli hypothesis will result in perfect bond conditions between fibers (no sliding 

of a fiber with respect to another is allowed). In 2D structural analysis, for a fiber 

having its centroid located at the ordinate y in the section reference, the axial 

longitudinal strain in the fiber 𝜀(𝑦) can be determined in function of the section’s 

uniform axial strain along x axis 𝜀𝑥 and the section’s curvature along z axis 𝜙𝑧 

 𝜀(𝑦) = 𝜀𝑥 − 𝑦𝜙𝑧 = {1 −𝑦} {
𝜀𝑥
𝜙𝑧
} (1) 

since in nonlinear analysis the calculation is done by increments and we get 

 ∆𝜀(𝑦) = ∆𝜀𝑥 − 𝑦∆𝜙𝑧 = {1 −𝑦} {
∆𝜀𝑥
∆𝜙𝑧

} (2) 

this axial strain increment of the fiber ∆𝜀(𝑦) causes an increment in the section’s 

internal axial force ∆𝑁 and bending moment along 𝑧 axis ∆𝑀𝑧. 
 ∆𝑁 = 𝐸𝑇 𝑓𝑖𝑏𝑒𝑟𝐴𝑓𝑖𝑏𝑒𝑟∆𝜀(𝑦) (3.a) 

 ∆𝑀𝑧 = −𝑦∆𝑁 = −𝑦𝐸𝑇 𝑓𝑖𝑏𝑒𝑟𝐴𝑓𝑖𝑏𝑒𝑟∆𝜀(𝑦) (3.b) 

for a single fiber, the resulting increment of internal forces in the section is 

 {Δ𝐹𝑆𝑒𝑐𝑡𝑖𝑜𝑛} = {
∆𝑁
∆𝑀𝑧

} = 𝐸𝑇 𝑓𝑖𝑏𝑒𝑟𝐴𝑓𝑖𝑏𝑒𝑟 [
1 −𝑦

−𝑦 𝑦2
] {
∆𝜀𝑥
∆𝜙𝑧

} (4) 

for all the fibers, the entire resulting increment of internal forces in the section is 

 {Δ𝐹𝑆𝑒𝑐𝑡𝑖𝑜𝑛} = {
∆𝑁
∆𝑀𝑧

} = ∑ 𝐸𝑇 𝑓𝑖𝑏𝑒𝑟 𝑖
𝑛𝑓𝑖𝑏𝑒𝑟
𝑖=1

𝐴𝑓𝑖𝑏𝑒𝑟 𝑖 [
1 −𝑦𝑖
−𝑦𝑖 𝑦𝑖

2 ]⏟                      
[𝐾𝑇]

{
∆𝜀𝑥
∆𝜙𝑧

} (5) 
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where 𝑛𝑓𝑖𝑏𝑒𝑟is the total number of fibers in the section and [𝐾𝑇] is the section’s 

tangent stiffness matrix. 

The entire element is the third level of analysis. Linear shape functions are considered 

for longitudinal translation and Hermite cubic shape functions are used for bending. 

Applying the principle of virtual work we get 

 {𝐹𝑖𝑛𝑡} = ∫[𝐵(𝑥)]
𝑇 {
1
−𝑦
} 𝜎𝑓𝑖𝑏𝑒𝑟(𝑥, 𝑦)𝑑𝑉 (5) 

 [𝐾𝑇] = ∫[𝐵(𝑥)]
𝑇 {
1
−𝑦
}𝐸𝑇 𝑓𝑖𝑏𝑒𝑟(𝑥, 𝑦){1 −𝑦}[𝐵(𝑥)]𝑑𝑉 (6) 

where {𝐹𝑖𝑛𝑡} is the internal nodal force vector of the element, [𝐾𝑇] is the element’s 

tangent stiffness matrix and [𝐵(𝑥)] is the gradient operator containing the derivatives 

of shape functions. 

The volume integral required for the calculation of {𝐹𝑖𝑛𝑡} and [𝐾𝑇] is split into a 

surface integral on the cross section and a 1D integral along the longitudinal axis of 

the element. Since the element’s cross section is already divided into fibers, we 

substitute the surface integration by the summation of fiber areas. Next, the 

longitudinal 1D integration is done by Gauss points. 

 

3  Full and reduced dynamic models  
As already mentioned, the classical time costly approach for capturing the nonlinear 

seismic response of a structure in function of time is the full model implicit direct 

integration nonlinear time history analysis. The Newmark-𝛽 method is one of the 

famous implicit direct integration techniques used for linear and nonlinear time 

history analysis. For this method, knowing the structural system state at instant 𝑡𝑖 
(displacement, velocity and acceleration vectors) and assuming a variation pattern for 

acceleration between instants 𝑡𝑖 and 𝑡𝑖+1 (i.e. constant average acceleration) makes it 

possible to express the dynamic equation of the structural system at instant 𝑡𝑖+1 with 

only one unknown (the displacement vector at instant 𝑡𝑖+1) and thus solving easily the 

system. 

The proper orthogonal decomposition POD also known as the Principal Component 

Analysis PCA and the Karhunen-Loève Decomposition KLD is a statistical analysis 

of observation data. Let’s consider a data matrix [𝑋] containing 𝑛 observation vectors 
[𝑋] = [{𝑋1} ⋯ {𝑋𝑛}] and each observation vector is made of m dimension 

 [𝑋] = [{𝑋1} ⋯ {𝑋𝑛}] = [

𝑥11 … 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑚1 … 𝑥𝑚𝑛

] (7) 

{𝑆𝑖} = {𝑥𝑖1 ⋯ 𝑥𝑖𝑛} is row 𝑖 in matrix [𝑋] and represents all the data collected on 

dimension 𝑖. If data set {𝑆𝑖} ∀ 𝑖 has a zero mean, the variance of {𝑆𝑖} becomes 

 𝜎2({𝑆𝑖}) =
1

𝑛−1
× ∑ (𝑥𝑖𝑘 −𝑚𝑒𝑎𝑛({𝑆𝑖}))

2
=𝑛

𝑘=1
1

𝑛−1
× ∑ (𝑥𝑖𝑘)

2𝑛
𝑘=1 =

1

𝑛−1
{𝑆𝑖}{𝑆𝑖}

𝑇

 (8) 

and the covariance of {𝑆𝑖} and {𝑆𝑗}  becomes 

 𝐶𝑂𝑉({𝑆𝑖}, {𝑆𝑗}) =
1

𝑛−1
× ∑ (𝑥𝑖𝑘 −𝑚𝑒𝑎𝑛({𝑆𝑖})) (𝑥𝑗𝑘 −𝑚𝑒𝑎𝑛({𝑆𝑗}))

𝑛
𝑘=1

 (9.a) 

 𝐶𝑂𝑉({𝑆𝑖}, {𝑆𝑗}) =
1

𝑛−1
× ∑ (𝑥𝑖𝑘)(𝑥𝑗𝑘)

𝑛
𝑘=1 =

1

𝑛−1
{𝑆𝑖}{𝑆𝑗}

𝑇
 (9.b) 
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High value of 𝜎2({𝑆𝑖}) indicates high action on dimension 𝑖 and vice versa. High 

value of 𝐶𝑂𝑉({𝑆𝑖}, {𝑆𝑗}) indicates high similarity between the actions on dimension 𝑖 

and dimension 𝑗. On the other hand,  𝐶𝑂𝑉({𝑆𝑖}, {𝑆𝑗}) = 0 indicates zero resemblance 

(total independence) between the actions on dimension 𝑖 and dimension 𝑗. 
If data set {𝑆𝑖} ∀ 𝑖 has a zero mean, the covariance of matrix [𝑋] becomes 

 𝐶𝑂𝑉([𝑋]) =
1

𝑛−1
[𝑋][𝑋]𝑇 (10.a) 

 𝐶𝑂𝑉([𝑋]) =

[
 
 
 

𝜎2({𝑆1}) 𝐶𝑂𝑉({𝑆1}, {𝑆2}) ⋯ 𝐶𝑂𝑉({𝑆1}, {𝑆𝑛})

𝐶𝑂𝑉({𝑆2}, {𝑆1}) 𝜎2({𝑆2}) ⋯ 𝐶𝑂𝑉({𝑆2}, {𝑆𝑛})
⋮ ⋮ ⋱ ⋮

𝐶𝑂𝑉({𝑆𝑛}, {𝑆1}) 𝐶𝑂𝑉({𝑆𝑛}, {𝑆2}) ⋯ 𝜎2({𝑆𝑛}) ]
 
 
 

 (10.b) 

Determining the principal components of data matrix [𝑋] starts by finding a new 

orthonormal reference [𝑁]. The initial data matrix [𝑋] is expressed in this new 

reference as [𝑋′] = [𝑁]𝑇[𝑋]. For [𝑁] to be containing the principal components of the 

data observation, 𝐶𝑂𝑉([𝑋′])  should be a diagonal matrix. In other words, we have 

zero similarity between actions on different new dimensions in reference [𝑁] 

(𝐶𝑂𝑉({𝑆′𝑖}, {𝑆′𝑗}) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗).  

Since 𝐶𝑂𝑉([𝑋]) is made up of [𝑋][𝑋]𝑇 so it is a symmetrical matrix and thus has real 

eigenvalues. 

 [𝑋][𝑋]𝑇[∅] = [∅][𝜆]  (11) 

where [∅] is the eigenvectors matrix and [𝜆] is the diagonal matrix containing the 

eigenvalues. Eigenvectors are orthonormal vectors and we can demonstrate that the 

new reference [𝑁] we were talking about in the previous paragraph is in fact the 

eigenvectors matrix ([𝑁] = [∅]) of [𝑋][𝑋]𝑇. In fact for [𝑋′] = [∅]𝑇[𝑋] we get 

 𝐶𝑂𝑉([𝑋′]) =
1

𝑛−1
[𝑋′][𝑋′]𝑇 =

1

𝑛−1
[∅]𝑇 [𝑋][𝑋]𝑇[∅]⏟      

[∅][𝜆]

= [𝜆] (12) 

𝐶𝑂𝑉([𝑋′]) is a diagonal matrix and 𝜎2({𝑆′𝑖}) = 𝜆𝑖. We notice that the higher 𝜆𝑖 is the 

more we have actions on dimension 𝑖 in the eigenvectors reference. As a conclusion, 

principal components of the data set [𝑋] are the eigenvectors of [𝑋][𝑋]𝑇 and modes 

with high eigenvalues are the most influential in representing [𝑋]. 
The orthogonal eigenvectors obtained are called POD modes and the corresponding 

eigenvalues are called proper orthogonal values. The POD modes can be used to 

reconstruct the initial data matrix [𝑋]. The higher the eigenvalue of a POD mode is, 

the more essential this mode is in recreating [𝑋].  
By considering the most important 𝑠 POD modes (𝑠 < 𝑚) and placing them in [𝑇] ∈
ℝ𝑚×𝑠, the {𝑋𝑡} snapshot vector previously expressed in 𝑚 dimensions can now be 

approximated in the lower 𝑠 dimensions 

 {𝑋𝑡}⏟
∈ℝ𝑚×1

≅ [𝑇]⏟
∈ℝ𝑚×𝑠

{𝑄𝑡}⏟
∈ℝ𝑠×1

 (13) 

where {𝑄𝑡} contains the coordinates of the snapshot vector in the new reference [𝑇]. 
The choice of the number 𝑠 of POD modes to consider in the reduced new reference 

should satisfy 2 conditions: 

The representation in the new reference should be accurate so the error should be 

minimal. The higher 𝑠 is, the more accurate the approximation is. 
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 𝑒𝑟𝑟𝑜𝑟 = ∑ ‖{𝑋𝑡𝑖} − [𝑇]{𝑄𝑡𝑖}‖
𝑛
𝑖=1  (14) 

For the dimensions reduction to be efficient, the number of chosen POD modes 𝑠 
should be relatively small. 

In order to balance between accuracy and efficiency, an energy criterion is considered 

to determine the optimal value of 𝑠. The Proper Orthogonal Value of a mode gives an 

indication on the energy carried by this mode. Generally, the first 𝑠 POD modes 

carrying at least 99% of the total system energy are considered for the new reduced 

reference. 

 
∑ 𝜆𝑖
𝑠
𝑖=1

∑ 𝜆𝑗
𝑚
𝑗=1

≥ 99% (15) 

In structural dynamics, the POD reduction can be applied on the direct integration 

time history analysis for linear or nonlinear structures. In order to get the observation 

data required for the POD, we initially do a classical implicit direct integration time 

history analysis of the full structural finite element model subjected to a specific base 

excitation. Let’s consider a nonlinear structural system with 𝑚 degrees of freedom 

and 𝑛 snapshots were taken. We calculate the POD modes and proper orthogonal 

values of the data matrix [𝑋] and then choose the subspace [𝑇] ∈ ℝ𝑚×𝑠 containing 

the first 𝑠 POD modes satisfying the 99% energy criterion. The dynamic equation of 

the system is 

 [𝑀]{𝑋̈(𝑡)} + [𝐶]{𝑋̇(𝑡)} + 𝑅({𝑋(𝑡)}) = {𝐹(𝑡)} (16) 

By replacing {𝑋(𝑡)} and its derivatives by [𝑇]{𝑄(𝑡)} and multiplying both sides of 

the dynamic equation by [𝑇]𝑇 we get 

 [𝑇]𝑇[𝑀][𝑇]⏟      
[𝑀𝑟]∈ℝ𝑠×𝑠

{𝑄̈(𝑡)} + [𝑇]𝑇[𝐶][𝑇]⏟      
[𝐶𝑟]∈ℝ𝑠×𝑠

{𝑄̇(𝑡)} + [𝑇]𝑇𝑅([𝑇]{𝑄(𝑡)})⏟          
𝑅𝑟([𝑇]{𝑄(𝑡)})∈ℝ𝑠×1

= [𝑇]𝑇{𝐹(𝑡)}⏟      
{𝐹𝑟(𝑡)}∈ℝ𝑠×1

 (17) 

The previously 𝑚 degrees of freedom dynamic system is reduced to 𝑠 degrees of 

freedom. However, the nonlinear restoring force 𝑅([𝑇]{𝑄(𝑡)}) cannot be reduced and 

always needs to be calculated in the full coordinate model which makes this step the 

most time consuming part of the entire process. In this case, the most effective direct 

time integration technique to adopt will be the one with the least recurrence for the 

expensive nonlinear restoring force calculation. 

Implicit direct time integration techniques are usually used in conjunction with the 

Newton-Raphson approach for solving nonlinear systems. In order to reach 

convergence with this approach, multiple iterations are required at each time step and 

for every iteration we need to calculate the tangent stiffness matrix, its inverse and the 

nonlinear restoring force which are all time costly. Using the constant stiffness 

Newton-Raphson approach will save us the need for the tangent stiffness calculation 

and its inverse but will increase the number of iterations required for convergence. 

On the other hand and for explicit direct time integration techniques, the popular 

central difference method requires only one iteration per time step and no expensive 

calculation of the tangent stiffness matrix and its inverse are needed (only the 

nonlinear restoring force is required). However, the central difference approach is 

conditionally stable and needs to satisfy the following stability condition 

 ∆𝑡 <
2

𝜔𝑚𝑎𝑥
 (18) 
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where ∆𝑡 is the time step and 𝜔𝑚𝑎𝑥 is the largest natural pulsation of the system. 

Generally, the full model of the structure has a relatively large number of degrees of 

freedom and will result in high natural pulsations (for high modes) hence requiring 

small time steps to maintain calculation stability and consequently increasing the 

computational cost. Nevertheless, when working with a reduced structural model, 

significantly fewer number of degrees of freedom are considered and thus the reduced 

system will have smaller natural pulsations which makes it possible to use larger time 

steps while maintaining numerical stability. For this reason, in this work the central 

difference method is considered to be the most effective direct time integration 

technique for reduced models. 

This simplification of the POD nonlinear dynamic model can be used in a variety of 

ways. The structure is examined for a number of potential earthquakes and is 

examined and verified for each excitation (shock record) independently, as was 

previously indicated for the dynamic seismic analysis. We begin with the traditional 

full model implicit direct integration nonlinear time history analysis for the first 

excitation because we must perform an analysis for every excitation. In order to 

simplify the dynamic model in the examination of the remaining excitations, we can 

identify the key POD modes by gathering snapshots from this preliminary analysis. 

[9] suggested this method and used it to analyze seismic base isolators as well as on a 

small-scale steel frame. In this article, we will use this method and expand it to a 

multistory frame reinforced concrete structure, using the multi-fiber section technique 

to describe the material nonlinearity. 

 

4.   Application   
At first we need to consider the base vibrations to use. The following 4 earthquake 

recordings obtained from the Center of Engineering for Strong Motion Data CESMD 

(www.strongmotioncenter.org) were considered (refer to Table 1). 

 

Table 1: Considered earthquakes. 

Earthquake  Location Date Magnitude 
Measurement 

station 

Vibration 

direction 

Total 

duration  

Time 

step 

Northridge  

Los 

Angeles, 

USA 

01/17/1994 6.4 ML 

Newhall LA 

county fire 

station 

0° 60s 20ms 

Elcentro  
California, 

USA 
05/18/1940 6.9 Mw Elcentro 0° 53.74s 20ms 

L’Aquila 
L’Aquila, 

Italy 
04/06/2009 6.3 Mw 

L'Aquila  

V.Aterno  

Centro Valle 

90° 60s 20ms 

Chile  

Off the 

coast of 

central 

Chile 

02/27/2010 8.8 Mw 
Constitucion 

city 
90° 120s 20ms 
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       Figure 4. Position of nonlinear 

elements in RC frame 

Referring to Figure 3, the structure is a 2D Reinforced Concrete (RC) multistory frame 

consisting of 10 stories and 5 spans, with a 3 m story height and a 5 m span length. 

The beams are subjected to a linear load of 1T/m, and the structural self-weight is 

disregarded. Every concrete column and beam is separated into finite parts of 1 m 

length and is thought to have a 40x40 cm square cross section with four 20 mm High 

Bond HB reinforcing bars on the top and bottom (see Figure 5). Two steel fibers and 

four concrete fibers make up the cross section. A 5% damping ratio for the first two 

eigenmodes was obtained using Rayleigh damping (the first two eigenmodes involve 

almost 90% of the total mass). Because of the intricacy of the reinforced concrete 

components, the energy criterion for choosing POD modes is set at 99.99%. 

The components close to the beam-column connections at the first five stores are 

thought to exhibit material nonlinearity (see Figure 4). Initially linearly elastic and 

later plastic with strain hardening, the steel rebar is said to have a bilinear backbone 

curve. Its yielding stress is 400 MPa, its yielding strain is 2‰, its elastic Young 

modulus is 200 GPa, its ultimate stress is 420 MPa, and its ultimate strain is 2.5%. 

The steel material will exhibit kinematic hysteresis behavior under cyclic stress if 

nonlinearity is achieved (see Figure 6). A simplified version of the Mander model 

[12], which accounts for the destructive effects, is used to simulate concrete, which is 

thought to be unconfined. The maximum tensile strength is 2.5 MPa (10% of the 

compressive strength) at a corresponding strain of 0.1 MPa, the ultimate compressive 

strain is 4 MPa, the elastic Young modulus is 25 GPa, and the maximum concrete 

compressive strength is 25 MPa at a corresponding strain of 2 MPa (see Figure 7). 

 

 

 

 

 

 
Figure 3. RC frame geometry and loading 
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Figure 5. RC element multi-fiber section 

 

 

 

 

 

 

Figure 6. Steel reinforcement axial stress-

strain curve 
 

Figure 7. concrete axial stress-strain 

curve 

 

The first vibrations is regarded as the Northridge earthquake. For this earthquake, 

a Full Model (FM) implicit nonlinear time history analysis was conducted using a 

time step of 20 ms. During the first 15 seconds of the vibration, when the majority of 

the violent exitation takes place, and at evenly spaced time intervals, fifty snapshots 

of the ensuing displacement vector were acquired. Based on the findings of the 

Northridge earthquake, the dynamic system was decreased and POD modes were 

taken out of the snapshot matrix. Next, for the remaining earthquakes (Chile, 

L'Aquila, and Elcentro), a 20 ms time step explicit nonlinear time history analysis 

using the Reduced Model (RM) was conducted. It should be mentioned that in order 

to have a baseline reference, FM implicit nonlinear time history analysis was carried 

out independently for the Chile, L'Aquila, and Elcentro earthquakes. Additionally, 

RM analysis was done for the Northridge earthquake in order to compare it with the 

entire dynamic model that was first constructed. 

Since the first four POD modes account for over 99.99% of the system's energy, they 

make up the reduced base for this structure. This structure's original 1140 degrees of 

freedom are therefore reduced to just 4. 
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Figure 8. Classic structural eigenmodes Vs POD modes 

 

 

 

 

By comparing the POD modes with the classical eigenmodes of the structure, we can 

clearly see the nonlinearity effect in the POD modes at the first 5 stories of the 

structure especially for modes 2 and 3. 

 

 

 

 
Figure 9. Structural top left corner horizontal displacement in function of time for 

Full Models (FM) and Reduced Models (RM) 
 

 
 

 

As we can see in Figure 9 the reduced models results are very close to the full models 

and at a fraction of the time cost, for further details refer to the following table 2. 
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Table 2: The Reduced Model's (RM) accuracy and time savings in comparison to the 

Full Model (FM) 

Earthquake  FM time RM time 
Time 

saving 
Speedup 

Average 

error 

Max horiz 

displacement 

Northridge  728.11 s 47.57 s 93.47% 15.3 2.07 cm 31.16 cm 

Elcentro  691.55 s 42.79 s 93.81% 16.2 0.53 cm 9.96 cm 

L’Aquila  740.68 s 48.15 s 93.50% 15.4 0.17 cm 12.05 cm 

Chile  1629.49 s 101.77 s 93.75% 16.0 1.01 cm 23.81 cm 

 

We can clearly see the time saving benefits of the POD modes in reducing the 

nonlinear structural system. Furthermore, the structural model subjected to additional 

excitations (Elcentro, L'Aquila, and Chile Earthquake) is reduced effectively by the 

POD modes that were taken from the Full Model (FM) study of the Northridge 

earthquake. 

 

 

5.    Conclusions  
 

In this study, we expanded the use of Proper Orthogonal Decomposition to minimize 

nonlinear dynamic analysis  numerical cost of reinforced concrete multistory frame 

structures, where the multifiber section technique was used to simulate material 

nonlinearity. We achieved to reduce a system with 1140 degrees of freedom to just 4 

degrees while keeping an acceptable level of accuracy and obtaining a speedup of 

about 16 (the reduced model computation is 16 times quicker than the complete 

model). Additionally, it was demonstrated that POD modes derived from the 

examination of a complete structural model exposed to a particular base vibration 

could also be easily used to reduce the same model under various base excitation 

conditions. Having a snapshot matrix of the dynamic system that is accurately 

representational is crucial in this case. We are interested in extending this method to 

2D reinforced concrete structural components (plates, shells, and membranes) 

utilizing the layered 2D element model in order to increase time savings and accuracy 

of findings. 
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