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Abstract 
 

This paper presents an optimization-based approach for the automated design of 

combined cable-stayed concrete bridges. This approach combines an automated 

multi-start procedure with a gradient-based algorithm to solve the original non-convex 

optimization problem. The finite element method is used for the three-dimensional 

analysis considering dead load, road traffic live load and concrete time-dependent 

effects. The design is formulated as a cost minimization problem subject to constraints 

on the displacements and stresses considering service and strength criteria defined 

according to the provisions of the Eurocodes. A constraint aggregation approach is 

adopted to solve this problem by minimizing a convex scalar function obtained 

through an entropy-based approach. The discrete direct method of sensitivity analysis 

provides the structural response to changes in the design variables. The design 

variables are the deck and tower sizes, the cable-stays' and under-deck cables’ 

prestressing forces and cross-sectional areas, the tower height, the maximum strut 

length and the distance from the tower to the backstays’ anchor point. The 

optimization of a 90 m span bridge illustrates the features and applicability of the 

proposed approach. The optimum design features a deck slenderness of 1/72.1, 

maximum strut length-to-span ratio of 1/10.8 and height of the tower-to-span ratio of 

1/4.4. 

 

Keywords: cable-stayed bridges, under-deck cable-stayed bridges, combined cable-

stayed bridges, optimization, concrete, cable prestressing forces, sizing design 

variables, shape design variables. 
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1  Introduction 
 

Cable-stayed bridges are used worldwide ranging from small pedestrian bridges to 

medium-to-long-span road and railway bridges. Their popularity is owed to structural 

and construction efficiency, as well as their economic and aesthetic advantages. With 

their multiple inclined cable-stays, modern cable-stayed bridges offer continuous 

support and natural prestressing to the deck, allowing for long spans and slender 

designs. Besides the usual symmetrical three-span arrangement, these bridges may 

present a wide variety of arrangements (single-span, two-span, multi-span, 

symmetrical or asymmetrical). These are highly redundant structures with their static 

and dynamic response influenced by the stiffness and mass distribution of their load-

bearing members (deck, tower and cable-stays) and the cable prestressing forces. 

The design of cable-stayed bridges is a challenging task involving the definition of 

the structural system, determining the members' cross-sectional sizes, and calculating 

the cable forces distribution. The analysis should include geometrical nonlinearities, 

erection stages and the time-dependent behaviour of concrete. As usual in civil 

engineering practice, this design problem is still mostly guided by the designers' 

experience and relies on a trial-and-error procedure. This involves complex and time-

consuming tasks and an optimized design may not be obtained. Optimization 

techniques, although not commonly adopted in practice, are particularly suited for 

assisting in this design problem, aiming at an efficient use of the materials and 

economic and sustainable solutions. Utilizing the increasing computational resources, 

it is relevant to promote the implementation of these techniques in practice, thus 

contributing to the automation of design procedures. A recent literature survey by 

Martins et al. [1] indicates that the optimization of cable-stayed bridges is a relevant 

research topic. Previous works on this topic can be categorized into two main research 

areas: cable forces optimization and optimal design. This survey also highlights some 

expected future developments, which can already be identified in recent works.  

The optimum design considering wind [2, 3] and earthquake [4, 5] responses, the 

reliability-based optimum design, and the robust design including for example, cable 

loss scenarios [6] are relevant subjects for future research. Additionally, researchers 

are exploring the use of metaheuristic algorithms [7, 8, 9], artificial neural networks 

and surrogate models [4, 12]. They are also addressing the optimization of footbridges 

[7, 10], curved bridges [5, 10], long-span and multi-span bridges, with a focus on 

innovative cable arrangements like crossing-cables [11, 12]. Besides studying 

innovative cable arrangements in traditional cable-stayed bridges, it is also worth 

investigating the optimization of non-conventional cable-stayed bridges, such as 

under-deck cable-stayed bridges and combined cable-stayed bridges [13]. These 

represent rather innovative bridge typologies concerning the traditional use of 

prestressing in bridge design and the stay-cables layout. Specifically, the stay-cables 

in these typologies are positioned either below the deck, as seen in under-deck bridges, 

or both above and below the deck, in the case of combined bridges. These bridge types 

were developed by renowned structural engineers, including Leonhardt, Schlaich, 

Virlogeux, Manterola, Robertson, and Cremer. The main features, structural 

behaviour and design criteria of these novel bridge typologies, along with an overview 
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of existing structures, are discussed in a series of works by Ana Ruiz-Teran and others 

[13, 14, 15, 16]. Nevertheless, the literature review reveals a knowledge gap in the 

optimization of these novel bridge typologies. Bearing this in mind, the optimization 

of under-deck cable-stayed concrete bridges was recently addressed by 

Martins et al. [17]. In this type of bridge, the cables are located below the deck, 

anchored at the deck’s support sections, and deviated by inclined struts, forming a 

polygonal layout. The struts, acting in compression, introduce upward vertical forces 

that help support the vertical loads in the deck. Additionally, the compression forces 

from the inclined cables at their anchorages provide a natural prestressing effect, 

which enhances the structural behaviour of the concrete deck. 

Combined cable-stayed bridges provide another innovative structural solution for 

bridge design by integrating both above-deck and under-deck cable-supporting 

systems. The Obere Argen viaduct in Germany, designed by Jörg Schlaich and built 

in 1990, serves as a major reference of this bridge typology [18]. The design of this 

type of bridge aims for an appropriate balance between the stiffness of the load-

bearing members (deck, tower, cable-stays and under-deck cables), with the cable 

prestressing forces playing a key role in controlling the structural response [15, 16]. 

From the literature review, and to the best of the authors’ knowledge, the optimization 

of combined cable-stayed bridges has not yet been previously reported. Moreover, the 

specificities of the cable-supporting system of this bridge typology do not permit the 

direct application of existing algorithms developed for cable-stayed bridges. 

The main objective of this work is to present an optimization-based approach for 

designing combined cable-stayed concrete bridges. To this end, a computer program 

was developed in the MATLAB environment to implement the proposed approach. 

This program integrates an automated procedure for generating multiple starting 

designs and a gradient-based optimization algorithm. Local optimum solutions are 

obtained from each starting design, and the least-cost solution is selected as the 

optimum design. This work represents a contribution to assist in the conceptual and 

preliminary design stages of this type of bridge. Furthermore, it also aims to provide 

more insight into the optimal design of this novel bridge typology. 

Section 2 details the proposed optimization strategy. In Section 3, the optimization 

of a 90 m single-span combined cable-stayed concrete bridge illustrates the features 

of the proposed approach. The main conclusions and expected future developments 

are presented in Section 4. 
 

2  Optimization Strategy 
 

The design of combined cable-stayed bridges is posed herein as a cost minimization 

problem subject to constraints defined according to Eurocodes’ provisions. This can 

be expressed by 
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where C(x) represent the total cost of the structure, gj(x) corresponds to the design 

constraints, x is the global design variable vector, M is the number of design 

constraints and N is the number of design variables, xmin and xmax are the vectors with 

the lower and upper bound values of the design variables, respectively. 

As usual in structural optimization, this problem may be non-convex. This problem 

features a moderate number of design variables of different types (shape, sizing, and 

mechanical) and a somewhat large number of nonlinear and conflicting constraints 

due to the structural discretization and several load cases. Gradient-based and non-

gradient-based strategies can be used to solve this problem. The latter do not require 

information on derivatives to minimize the objective function. These include 

techniques such as random search, branch-and-bound and metaheuristic algorithms 

(e.g., evolutionary algorithms, genetic algorithms, simulated annealing, and particle 

swarm optimization). Although versatile and easy to implement, these strategies may 

not be as efficient owing to their exponential convergence time with respect to the 

number of design variables. Additionally, the random nature of the search process in 

these techniques may pose some difficulty in finding appropriate values of the cables' 

prestressing forces in highly redundant cable-supported structures. Gradient-based 

strategies require the calculation of the gradients of the objective function and all 

design constraints concerning the design variables. The algorithm uses this 

information to determine the search direction and adjust the current design toward an 

optimum solution. These strategies feature polynomial convergence time to a local 

(not necessarily global) optimum solution. The information on the gradients makes 

these strategies efficient in searching for optimal designs comprising numerous design 

variables, such as a large number of cables’ prestressing forces, in addition to sizing 

and shape design variables. Nevertheless, the algorithm requires defining an 

appropriate initial design, and a local minimum can be expected. 

A gradient-based strategy is proposed herein to efficiently address the optimum 

design of an innovative concrete cable-supported bridge. This strategy combines a 

gradient-based algorithm with an automated multi-start procedure. This strategy 

facilitates the time-consuming task of defining appropriate starting designs. 

Moreover, by considering multiple starting designs, it contributes to avoiding the 

convergence to an inferior local optimum and simultaneously promotes the 

exploration of the design space. The analysis and optimization process is conducted 

for each starting design, and local optimum solutions are obtained. The least-cost 

design is selected as the optimum design. 

Gradient-based nonlinear programming algorithms may encounter difficulties 

when addressing problems with many design variables and constraints. This can be 

tackled via constraint aggregation, using classical (p-norm and Kreisselmeier-

Steinhauser (KS) function) or induced aggregation methods (induced exponential and 

induced power aggregation) [19]. Therefore, the problem in Equation 1 can be solved 

as a single objective optimization to minimize the cost subject to aggregated 

constraints. Alternatively, it can be addressed as a multi-objective optimization by 

aggregating the cost and all the design goals (defined by the constraints) in a single 

objective function [17]. The latter approach was adopted herein. The multi-objective 
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problem is solved indirectly by the minimization of the convex scalar function given 

by Equation (2), obtained through an entropy-based approach [20] 
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where ρ is a control parameter that should be tuned for each problem and must not be 

decreased through the analysis and optimization process. This function corresponds 

to the KS function, aggregates all the design goals and creates a convex approximation 

close to the boundaries of the original non-convex domain. This function includes all 

constraints with different probabilities of becoming active. As the iterations progress, 

uncertainty decreases about which constraints are most relevant for finding the 

optimum. This procedure reduces the cost design goal compared to previous iterations 

while keeping all constraints within limits. 

The design goals, gj(x), do not have an explicit algebraic form. Therefore, the 

problem is solved using an explicit approximation given by the Taylor series 

expansion of all the goals, around the current design variable vector, truncated after 

the linear term, given by 
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where gj(x) is the j-th design goal and dgj(x)/dxi is the sensitivity of the j-th design 

goal with respect to i-th design variable. The value of the aggregation parameter ρ 

should be tuned for each problem (usual values range from 100 to 2000) and must not 

be decreased during the optimization process. To ensure the accuracy of the explicit 

approximation, bound constraints with move limits were used. The MATLAB 

function fmincon, which minimizes a scalar function of several variables subject to 

bound constraints using an interior-point algorithm, was selected to minimize the 

objective function. 

This design problem comprises different types of design variables (shape, sizing, 

and mechanical). The shape design variables concern the maximum strut length, the 

height of the tower and the distance from the tower to the backstays’ anchor point. 

These design variables characterize the cable-supporting system and affect the mass, 

stiffness, and cost of the structure. The second type refers to the mechanical design 

variables corresponding to the prestressing forces of the cable-stays and under-deck 

cables. Although these variables do not directly influence the cost, they are 

fundamental in controlling the structural response of combined cable-stayed bridges. 

The sizing variables correspond to the cross-sectional dimensions of the deck, tower 

and struts, as well as the cross-sectional areas of cable-stays and under-deck cables. 

Figure 1 depicts the 23 design variables considered. 

Besides minimizing cost, the design should comply with a set of criteria concerning 

service and safety requirements. In the constraint aggregation approach adopted, the 

cost is considered the first design goal and can be expressed as 
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where C is the current cost of the structure, and C0 is the initial cost of each analysis 

and optimization cycle. With this approach, cost is always a primary objective for 

optimization. The second set of objectives concerns limiting the vertical 

displacements of the deck and the tower’s horizontal displacements under service 

conditions and considering the time-dependent effects 

( ) 01
0
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δ
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xg

           (5) 

where δ and δ0 are the displacement value and the limit value for the displacement 

under control, respectively. For the long-term analysis of the bridge, values of L/1000 

and H/1000 were considered as limits for vertical and horizontal displacements, 

respectively [21]. L and H correspond to the main span length and the height of the 

tower, respectively. 

 

Figure 1: Design variables, material properties and unit costs. 
 

The Eurocode 2 [22] design provisions were considered to define the stress 
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be expressed as follows 

L = 90 m

x
2

2 m

x
3

x
3

x
23

x
4

x
4

x
5

x
5

x
6

x
6

H

Deck: slab-girder cross section

15.00 m

x
12

h = x
11

0.25 m

x
12

Cables cross-section

Area = x
7
 ... x

10

Concrete - C50/60

E
cm

 = 37 GPa; γ = 25 kN/m3

f
ck

 = 50 MPa; f
ctm

 = 4.1 MPa; f
cd

 = 33.3 MPa

Mean Relative Humidity = 70%

Type N cement

Cover = 40 mm

t
0
 = 28 days

Cost: 450 €/m3 (including reinforcement)

Reinforcing steel - A500NR

E = 200 GPa; f
yk

 = 500 MPa; f
yd

 = 435 MPa

ε
yk 

= 2.5×10-3; ε
yd 

= 2.174×10-3

x
13

x
15

x
16

x
14

Towers: rectangular hollow sections

Section C-C’

x
17

x
19

x
20

x
18

Section D-D’

x
21

x
21

Under-deck struts: SHS

x
22

x
22

C C’

E = 210 GPa; γ = 77 kN/m3; f
yk

 = 275 MPa

Cost: 21.038 €/m3

Structural steel - S355

E = 195 GPa; γ = 77 kN/m3

f
pk

 = 1860 MPa; f
p0,1k

 = 1770 MPa

Cost: 15.000 €/m3 + 18.500 €/cable

Prestressing steel - Y1860

Tower - transverse view

C C’

D

D’

Section A-A’ Section B-B’

x
2

2 m

f
strut

 = x
1

A

A’
B B’



 

7 
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where σ and σallow are the acting stress and the corresponding allowable stress, 

respectively. Different values for allowable stress were considered for both service 

conditions and strength verification of concrete members. For service conditions, the 

allowable stresses of 4.1 MPa for tension and 22.5 MPa for compression were used. 

For strength verification, the allowable value corresponds to the concrete member's 

structural resistance (including its reinforcement). This is assessed based on the acting 

internal forces, such as bending and axial force, biaxial bending and axial force, or 

shear force. 

The steel struts that constitute the under-deck cable-staying system are subjected 

to high compression stresses. According to Eurocode 3 [23], the design constraint 

aiming to prevent the buckling of the struts can be expressed as 

( ) 01
,
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xg

           (7) 

where NEd is the acting axial force and Nb,Rd is the design buckling resistance of the 

member under compression. The latter is calculated considering pinned struts with a 

Class 1 cross-section. 

Another set of constraints concerns the cable-stays and under-deck cables’ stresses 

and can be written as 
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where σ and fpk are the acting stress and the characteristic value of the prestressing 

steel tensile strength, respectively. The value of k in Equation (8) was considered 

equal to 0.50 for service conditions and 0.74 for strength verification. Equation (9) 

concerns a lower limit for tension in the cable-stays and under-deck cables to ensure 

their structural efficiency. 

Combined cable-stayed bridges feature small geometrical nonlinearity and can be 

appropriately analysed through linear analysis [13, 15]. The finite element method 

was used for the three-dimensional analysis under static loading (dead load and road 

traffic live load) including concrete time-dependent effects. Euler-Bernoulli beam 

elements with 2-node and 12-degrees of freedom were used to model the deck and 

tower. Due to the short length and the stress level on the cable-stays and under-deck 

cables, the geometrical nonlinearity owing to the cables’ sag can be neglected. 

Therefore, these members were modelled as 2-node bar elements. The struts were also 

modelled using 2-node bar elements so that the connections between the struts and the 

deck are pinned, thus avoiding the transmission of bending moments between the 

struts and the deck. The structural concrete of the deck and tower was modelled as a 

linear viscoelastic material, and the time-dependent effects of ageing, creep and 
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shrinkage of concrete were computed according to the Eurocode 2 [22] formulations. 

Equivalent nodal forces were used to model the time-dependent effects of creep and 

shrinkage. These forces produce the same displacements field as the time-dependent 

effects. The stresses are then computed using only the elastic constitutive relationship 

between stresses and mechanical origin deformations. Detailed information about the 

time-dependent effects modelling can be found in previous work by Martins et al. 

[24]. A linear elastic behaviour of the materials (structural concrete, reinforcing steel, 

structural steel, prestressing steel) was considered. Material nonlinearity was 

considered when formulating the stress design constraints in the different structural 

members. Homogeneous concrete cross-sections were assumed, and the steel 

reinforcement was considered for design purposes only. The flowchart of the 

proposed strategy is depicted in Figure 2. 

 

Figure 2: Flowchart of the optimization strategy. 
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variables. To this aim, the discrete direct method was selected, utilizing both 

analytical and semi-analytical derivatives. The former was used for sizing and 

mechanical design variables, and the latter was used for shape design variables. 

The computer program begins by reading the problem data and generates a finite 

element model based on the design variables that describe the bridge's geometry. An 

iterative procedure is used to determine the prestressing forces and cross-sectional 

areas of the cable-stays and under-deck cables for an initial design. This automated 

procedure involves structural analysis, an influence matrix approach, and preliminary 

design calculations. The gradient-based algorithm utilizes the sensitivities 

information to minimize the objective function and improve the current design. The 

design variables are updated, and the analysis and optimization process is repeated 

until the changes in the design variables and the structure's cost become small. The 

definition of an initial design and its optimization is repeated for each of the Nidmax 

solutions considered. The optimal design is selected as the least-cost solution from the 

local optimum solutions (in the Pareto sense) obtained for each Nid starting design. 

3  Numerical Example and Results 

The numerical example concerns the optimization of a single-span combined concrete 

cable-stayed bridge with a total length of 90 m and a deck width of 15 m (Figure 3). 

The deck is simply supported at the abutments, featuring a slab-girder cross-section. 

An “A”-shaped tower with a height given by x2+1 m was considered. The above-deck 

suspension features two planes of two cables providing the deck with lateral 

suspension. Two cables deviated by three struts constitute the under-deck suspension 

system. The anchoring points of the cable-stays and the struts divide the span into 

15-m segments. Longitudinally, the struts are oriented along the bisector of the angle 

formed by the under-deck cables. In the transverse direction, “v-shaped” struts were 

adopted. The eccentricities of the under-deck cable-staying system are expressed in 

terms of the design variable, x1, corresponding to the maximum eccentricity of the 

cable-staying system at the central strut. The lateral struts present an eccentricity of 

3x1/4, corresponding to the eccentricity of a parabola with ends at the under-deck 

cables anchoring points in the deck, and a maximum eccentricity of x1 at the central 

strut. Detailed information regarding the calculation of the nodal coordinates of the 

struts can be found in a recent article by Martins et al. [17].  

Beam elements were used to model the towers and the deck. The main girders are 

modelled with longitudinal beam elements. The transverse beam elements represent 

the deck slab and the deck slab plus cross-beams, at the abutments and in the sections 

where cable-stays and struts are placed. The bridge finite element model is shown in 

Figure 3 and has a total of 96 nodes and 145 finite elements. The properties and unit 

costs of the materials considered are presented in Figure 1. 

Eight load cases were considered to check the relevant service and strength design 

constraints. The first case concerns the bridge subjected to dead load at the end of 

construction. This includes its self-weight and an additional dead load of 2.5 kN/m2 

(flooring, walkways, safety barriers and guardrails). The second case refers to the 

long-term analysis (18,250 days) of the bridge under the quasi-permanent load 
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combination (dead load plus 20% of road traffic live load). Six additional load cases 

were considered to account for the most unfavourable effects of the road traffic live 

load (5 kN/m2). These correspond to the live load placed on the entire deck length, or 

only on adjacent, or alternate spans. The construction stages may be relevant in the 

design of these bridges. Nevertheless, the current paper focuses on the static response 

of the complete bridge and thus, the erection stages were not directly considered. 

 
Figure 3: Finite element mesh of the bridge example. 

The problem features 23 design variables and 1047 design constraints for the eight 

load cases. To explore the design space, twelve initial designs were considered and 

optimized. These were defined by varying the deck sizes, the maximum eccentricity 

of the under-deck cable-staying system and the height of the towers. This aimed to 

achieve a deck slenderness of 1/50 and 1/70, a maximum strut length-to-span ratio of 

1/8, 1/10 and 1/12, and a height of the towers-to-main span ratio between 1/4 and 1/5. 

Figure 4 depicts the evolution of the bridge cost throughout the optimization process.  

The optimized solutions are obtained after a relatively small number of iterations, 

around 60 to 70 iterations. The example was run on a desktop personal computer (3.20 

GHz processor, 64.0 GB RAM and operating system Windows 10 Pro). The average 

time of optimizing each starting design is approximately 14.3 minutes, corresponding 

to 80 iterations. Similar optimized solutions are obtained with the different initial 

designs. The least-cost solution is obtained with the starting design f10_h50_H4 

characterized by x1 = 9 m (fstrut/L = 1/10), x11 = 1.80 m (h/L = 1/50) and x2 = 21.5 m 

(H/L = 1/4) (red curve in Figure 4). 

 

Figure 4: Bridge cost vs. number of iterations – multiple starting points. 
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as well as the tower height (Table 1). In the least-cost solution, the deck, cables, struts 

and tower represent 56.4%, 35.2%, 4.9% and 3.5% of the total cost, respectively. The 

value obtained for the cables is mainly due to a fixed cost (18.500 €/cable). Table 1 

presents the initial and final values of the cost and the design variables corresponding 

to the least-cost solution. The least-cost solution presents a maximum value of 9.0 cm 

for the deck vertical displacements and 1.8 cm for the tower horizontal displacement, 

considering the time-dependent effects (Figure 5).  

Design variable Initial value Final value Design variable Initial value Final value 

x1 [m] 9.000 8.335 x13 [m] 3.000 1.580 

x2 [m] 21.500 18.250 x14 [m] 3.000 1.574 

x3 [kN] 12499 8004 x15 [m] 0.300 0.139 

x4 [kN] 2459 2449 x16 [m] 0.300 0.100 

x5 [kN] 6320 6132 x17 [m] 3.000 1.788 

x6 [kN] 5847 6254 x18 [m] 2.000 1.312 

x7 [m2] 1.32×10-2 8.83×10-3 x19 [m] 0.300 0.194 

x8 [m2] 3.45×10-3 2.78×10-3 x20 [m] 0.300 0.217 

x9 [m2] 7.05×10-3 7.15×10-3 x21 [m] 0.300 0.337 

x10 [m2] 6.60×10-3 6.70×10-3 x22 [m] 0.016 0.012 

x11 [m] 1.800 1.249 x23 [m] 15.000 28.324 

x12 [m] 0.700 0.600    

Cost Initial value Final value Cost Initial value Final value 

Deck 271,519 €  230,178 €  Struts 25,076 €  20,165 € 

Tower 73,817 €  14,258 € Cables 146,573 €  143,688 € 

Total cost 516,984 € 408,289 €    

Table 1: Initial and final values of the cost and design variables – least-cost solution. 

 

Figure 5: Deformed configuration of the bridge for load case 2 – least-cost solution.  

The constraints concerning the deck vertical displacements for load case 2 and the 

deck normal stresses under service conditions are active at the optimum. Furthermore, 

the constraints regarding the cables’ stresses and the buckling of the struts in load 
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case 3 (bridge under dead load and live load applied on the entire deck) are also active 

at the optimum. 

4  Conclusions and Contributions 

The following conclusions can be drawn: 

• An optimization-based approach was proposed to assist in the conceptual and 

preliminary design of combined cable-stayed concrete bridges. The design is posed 

as an optimization problem to minimize the cost subject to constraints on the 

displacements and stresses, considering service and strength criteria. 

• An efficient convex optimization strategy is adopted to address the original non-

convex optimization problem. A gradient-based algorithm is coupled with an 

automated procedure for defining multiple starting designs. Local optimum 

solutions are obtained from each starting design, and the least-cost solution is 

chosen as the optimum design. The original problem is solved indirectly through 

the minimization of an entropy-based convex scalar function that aggregates the 

cost and all design constraints in a single objective function. 

• The proposed design approach automatically provides the design variables for this 

innovative bridge typology, balancing the stiffness of the deck and tower, and the 

suspension effect given by the above-deck and under-deck cable-staying system. 

This improves the structural behaviour and reduces the overall cost. The optimum 

solutions satisfy all the design constraints and feature cost reduction, primarily due 

to a decrease in the values of the sizing design variables of the deck and tower. 

• In the least-cost solution, the deck, cables, struts and tower represent 56.4%, 

35.2%, 4.9% and 3.5% of the total cost, respectively. The design is governed by 

the deck vertical displacements and normal stresses under service conditions, the 

buckling of the struts and the resistance of the cables. The optimum solution 

features a deck slenderness of 1/72.1, a maximum strut length-to-span ratio of 

1/10.8 and a height of the tower-to-span ratio of 1/4.4. 

• Future developments should consider topological design variables representing the 

number of struts and cable-stays, and towers with different typologies, such as “H”-

shaped and “inverted Y”-shaped. The optimization considering different types of 

cross-sections (solid or voided slab, box girder) and solutions (prestressed 

concrete, steel, steel-concrete composite) for the bridge deck should also be 

addressed. Furthermore, optimum design for road bridges subject to seismic action 

and footbridges experiencing pedestrian-induced vibrations should be considered 

in future research.  

• The development of metaheuristic algorithms for addressing this design problem 

should also be explored. Combining the gradient-based algorithm with a global 

search procedure will be addressed in upcoming research aiming at an improved 

exploration of the design space. 
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