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Abstract 
 

Topology optimization under dynamic constraints is challenging problem requiring 

special optimization procedures involving solution at each iteration step an 

eigenvalue problem. In this study we propose simple yet effective procedure of 

topology optimization under various dynamic loadings. The effectiveness of the 

proposed methodology is related with quasi-static approximation of the optimization 

process. 

Effectiveness of the proposed approach has been demonstrated on a topology 

optimization of a beam supporting ramp structure. Based on a number of modes it 

was concluded that proposed method can increase selected natural frequency by a 

factor of 3. 
 

Keywords: topology optimization, modal analysis, modular structures, structural 

dynamics, inertial forces, eigenvalue problem. 
 

1  Introduction 
 

Free-form pedestrian ramps are an element of building infrastructure that is 

susceptible to excessive vibrations, which must be taken into account at the design 

stage of such structures. Architectural form of an interesting example of this type of 

structure has been proposed recently by Zawidzki (2020) [1]. The advantage of such 

structures is their modular construction, which allows them to be freely shaped in 

even the most diverse terrain. However, one of the difficulties in their design is the 

correct prediction of the operating loads that cause the above-mentioned vibrations. 
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One of the first approaches to topological optimization of structures subjected to 

mechanical vibrations was presented in the work of Diaaz & Kikuchi (1992) [2]. As 

it was mentioned by in frequently cited book by Bendsoe and Sigmund (2004) [3] 

the main problem of these types of optimization problems is the non-smoothness of 

the eigenvalues. To tackle this problem special optimization algorithms are required. 

 

Since the publication above mentioned paper by Diaaz and Kikuchi a great 

number of researchers have been working in the field of topology optimization 

subjected to dynamic loadings. Computational procedure for eigenfrequency 

optimization problem has been proposed by Olhoff and Du (2014) [4]. Their goal 

was to design the vibrating structures by maximizing their fundamental 

eigenfrequency, an eigenfrequency of higher order, or the gap between two 

consecutive eigenfrequencies of given order, subject to a given amount of structural 

material and prescribed boundary conditions. Level set-based topology optimization 

of systems vibrating under coupled acoustic–structural excitations was presented by 

Shu et al.(2014) [5]. Topology optimization framework for structures under 

stationary stochastic dynamic loads was investigated by Gomez and Spencer 

(2019) [6]. 

 

In this study we conduct research on a simple yet efficient method for topology 

optimization under dynamic constraints. The method is an extension of previous 

Authors' work on topology optimization of elastoplastic structures (Blachowski et al. 

2020) [7].The effectiveness of the proposed method is demonstrated on an example 

of clamped beam supporting ramp deck. 
 

2  Methods 
 

The purpose of this study is to propose efficient approximate method allowing to 

design ramp-type structures subjected to dynamic loadings. The ramp under 

investigation is shown in Figure 1. 

 

Traditional topology optimization problem for eigenfrequency maximization is 

replaced with the following approximate solution 

 

𝐊𝐪 = 𝜔𝑖
2𝐌𝝋(𝒊),    𝑖 = 1,2, …        (1) 

 

where 𝐌 is mass matrix, 𝐊 is stiffness matrix, 𝐪 is displacement vector (quasi-static 

approximation of the mode shape), 𝜔𝑖 and 𝝋(𝒊)  are natural frequency and 

corresponding mode shape determined the whole design domain. 

 

Such a formulation of the optimization problem allows us to use a simple variant 

of fully stressed design algorithm. During the topology optimization procedure 

formula (1) is used in such a way, that first we select index 𝑖, which provides 

information about inertia forces of 𝑖-th mode shape. Next, mass and stiffness 

matrices are modified at rows and columns corresponding to removed redundant 
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material. It means that at each iteration of the optimization procedure we use the 

following update formula 
 

𝐊(𝝆𝑙)𝐪(𝝆𝑙) = 𝜔𝑖
2𝐌(𝝆𝑙)𝝋(𝒊),    𝑙 = 1,2, … no. of iterations (2) 

 

where 𝝆𝑙 denotes design variables vector (representing finite element density). 

 

Due to the mode switching phenomenon we keep constant term 𝜔𝑖
2𝝋(𝒊). It protects 

the convergence of the optimization procedure since the inertia forces remain 

constant during the optimization, so that we optimize our system for inertia forces 

related to 𝑖-th mode shape of the initial design domain. 
 

 

 

 

 

Figure 1: Ramp subjected to dynamic forces resulting to pedestrian traffic. 
 

 

2.1. Supporting beam (S) 

 

Beam supporting the ram is made of a material with the following properties: Young 

modulus Ex = 205 GPa, Poisson ration ν = 0.3 and material density ρ0 = 7850 kg/m3 . 

Geometric dimensions are height, width and thickness L=9 m, H=1 m, B=1 m,  

respectively. 
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Figure 2: Design domain used in optimization process. 

  

 

The first step in our method is to determine mode shape and corresponding natural 

frequencies of the whole design domain. 

 

 

 
 

 

 
 

 

 
 

Figure 3: First three mode shape of the design domain. 
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3  Results 
 

 

3.1 Optimal topologies under inertia forces of the first three modes 

 

In the first section of the results we present optimal topologies obtained using our 

quasi-static approximation of the eigenvalue problem. Topologies optimized for the 

inertia forces generated using 1st, 2nd and 3rd mode of design domain are shown in 

Figure 3. 

 

 

 

a) Optimal topology under 1st inertia force 

 

 
 

 

b) Optimal topology under 2ndt inertia force  

 

 
 

 

c) Optimal topology under 3rd  inertia force 

 

 
 

Figure 3: Optimal topologies obtained for the first three inertial forces 
 
 

 

 

Having obtained optimal topologies for the inertia forces related to the first three 

modes of the design domain, it is interesting to compare their modes with initial 

modes of the whole design domain. 
 

 

3.2 Vibration modes of the beam optimized for inertial force of the 1st mode 

 

Mode shapes of the 1st optimal topology have been shown is Figure 4, 
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Figure 4: Mode shapes of the 1st optimal topology 

 

Since this topology has been obtain for quasi-statically applied inertial forces of 

the 1st mode of the design domain (Figure 3) it could be expected that the 

distribution of the mass is connected with inertial forces of the first mode of the 

design domain. However, it can be noticed that local modes appear in a set of new 

modes such as 6th mode shown in Figure 4. 

 

 

3.3. Vibration modes of the beam optimized for inertial force of the 2nd mode 

 

Similarly as in the case of the topology optimized for inertia force of the 1st mode of 

the design domain, the topology optimized for inertia forces of the 2nd mode of the 

design domain are reflecting intensity of the inertial forces of that mode. However, 
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in this case also local modes appear. It can be noticed in Figure 5, where 3 mode 

after optimization do not require bending of the beam, only deformation symmetric 

to the neural axis is visible. 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 5: Mode shapes of the 2nd optimal topology 
 

 

 
 

 

 

3.4. Vibration modes of the beam optimized for inertial force of the 3rd mode 

 

Finally, similar observation as in the two previous cases, the mass distribution of 

third topology appears as in a regular form with 3rd half waves. 
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Figure 6: Mode shapes of the 3rd optimal topology 

 

3.5. Modal Assurance Criterion (MAC) 

 

To monitor the improvement of the design during optimization one has to pay 

attention to the mode switching phenomenon. It exhibits in a reordered way of 

modes. To keep tracking this modification during optimization process we can use 

so called Modal Assurance Criterion (MAC) which give us an information about 

spatial correlation of two pair of modes. 

This criterion is usually express by the following formula 

 

MAC𝑖𝑘 =
[𝝋𝑗

(𝑖)
(𝑙)]

𝑇

𝝋𝑗
(𝑘)

(𝑙 − 1)

‖𝜑𝑗
(𝑖)

(𝑙)‖ ‖𝜑𝑗
(𝑘)

(𝑙 − 1)‖
 

where 𝝋𝑗
(𝑘)

(𝑙) is 𝑘-th mode shape (𝑘 = 1,2,3) calculated from optimal topology for 

inertia forces generated 𝑗-th mode of the design domain (𝑗 = 1,2,3) at 𝑙-th iteration. 
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In tables below columns are related to mode shapes of the optimal topology while 

rows design domain forms. 

 

We can easily recognize that the highest correlation for mode 1 of optimal topology 

occurs at 1st mode of design domain. Exception is topology no. 2 which has the third 

mode correlated with 2nd mode of the design domain. 

However, the most discrepancy can be observed for the third mode of the design 

domain, which is correlated with 6th, 5th and 12th mode of the optimized topology 

no.1, 2 and 3, respectively. 

 

 
 

Optimized 
topology for 1st 

mode 
-------------- 

Design domain 
mode 

1 2 3 4 5 6 

1 0.99 0.00 0.00 0.00 0.00 0.10 

2 0.00 0.83 0.00 0.00 0.53 0.00 

3 0.017 0.00 0.00 0.00 0.00 0.80 
Table 1: Comparison of the mode shapes correlation for the 1st optimal topology 

 

 

 
Optimized 

topology for 
2nd mode 
-------------- 

Design 
domain 
mode 

1 2 3 4 5 

1 0.96 0.00 0.00 0.00 0.29 

2 0.00 0.00 0.43 0.00 0.00 

3 0.24 0.00 0.00 0.00 0.84 
Table 2: Comparison of the mode shapes correlation for the 2nd optimal topology 

 
 

Optimized 
topology 
for 3rd 
mode 
-------------- 
Design 
domain 
mode 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.03 

2 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.13 0.12 0.00 0.42 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.22 0.00 0.87 

Table 3: Comparison of the mode shapes correlation for the 3rd optimal topology 
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3.6. Natural frequencies before and after optimization 
 

Finally, table 4 provides an information about effectiveness of the proposed 

optimization process. It can be seen that the first topology optimized for 1st mode of 

the design domain achieves the highest increase in natural frequency. It move from 

60.24 Hz for the first mode of the design domain to 190.4 Hz, which gives increase 

by factor 3.16, while the natural frequencies of other modes are magnified by factor 

1.38-1.93. Similar phenomena can be observed for the second and third natural 

frequency of the topology no.2 and 3, respectively. 
 
 

 

Design 
domain 

Mode 
no. 

1st 
inertial 
force Multiplier 

Mode 
no. 

2nd 
inertial 
force Multiplier 

Mode 
no. 

3rd 
inertial 
force Multiplier 

60,24 1 190,4 3,16 1 106,4 1,77 1 101,1 1,68 

152,7 2 211,1 1,38 3 399,7 2,62 2 197,6 1,29 

273,4 6 527,2 1,93 5 414,4 1,52 12 740,0 2,71 

Table 4: Comparison of the natural frequencies (design domain vs optimal 

topologies) [Hz] 

 

4  Conclusions and Contributions 
 

In this study we proposed simplified procedure for topology optimization of beams 

supporting deck of the ramp structures. It was shown that selecting a given mode 

from the set of modes of the initial design domain we can obtain significant increase 

in the corresponding frequency by a factor of  3. It can be achieved using quasi-

static approximation of the original eigenfrequency maximization problem. 
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