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Abstract

This paper investigates the size optimization of beam structures under self-weight
loading. The study formulates a gradient-based optimization framework incorporat-
ing first-order sensitivity analysis of both the objective function and constraints. A key
challenge arises from the nonlinear dependence of critical internal forces on cross-
sectional geometry. Two formulations of the ultimate limit state strength constraints
are compared: a bounded format, which directly limits internal forces, and a relative
format, which expresses constraints as ratios of internal forces to resistances. The pa-
per provides full analytical derivatives for both formats, emphasizing their lineariza-
tion properties. The proposed methodology is tested on both statically determinate
and indeterminate structures, enabling a systematic evaluation of constraint behavior,
convergence robustness, and computational efficiency. Results show that while the
bounded format offers better constraint control for large sections, it may cause infea-
sibility near small designs. Conversely, the relative format improves robustness across
a wider design space. The findings highlight important trade-offs between formulation
styles and provide guidance for selecting constraint formats in self-weight-dominated
structural optimization problems.
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1 Introduction

Minimizing structural weight is a fundamental objective in engineering fields such
as civil, aerospace, and mechanical engineering [7] [6]. In beam structures, this task
becomes particularly challenging due to the influence of self-weight [5]. Unlike exter-
nally applied loads, self-weight is directly dependent on the structure’s geometry and
material properties, creating an intrinsic link between the load and the design vari-
ables. This coupling introduces a unique layer of complexity, making size optimiza-
tion under self-weight a distinct and demanding subclass of structural optimization.

The goal is to minimize the total weight of the structure while satisfying key per-
formance criteria, including strength, stiffness, deflection limits, buckling [9] resis-
tance, and others [12]. Both the objective function and the constraints often involve
nonlinear, non-convex relationships, increasing the mathematical and computational
demands of the problem.

To address these challenges efficiently, gradient-based optimization methods are
typically preferred. While metaheuristic algorithms can explore the design space glob-
ally [2], they are often too computationally intensive for iterative design processes
that require rapid feedback. In contrast, well-established techniques such as sequen-
tial quadratic programming [4], Interior Point Methods, and the Method of Moving
Asymptotes [10] are widely adopted for their fast convergence and ability to handle
continuous, constrained problems effectively.

Among these, the Inexact Restoration (IR) method [8] [11] offers a compelling
alternative. Its strength lies in a two-phase framework that decouples feasibility and
optimality. The feasibility phase focuses on satisfying critical constraints—such as
structural equilibrium and compatibility—while the optimality phase targets objective
function reduction. This separation allows greater algorithmic flexibility and robust-
ness, especially when dealing with complex or computationally intensive constraint
sets. Moreover, under standard assumptions, IR ensures convergence to a stationary
point.

The design variables typically describe geometric quantities such as cross-sectional
area, moment of inertia, height, and width. Constraints are formulated based on per-
formance criteria, including allowable stresses, displacement limits, and stability con-
ditions. Since self-weight is a function of the design itself, any modification to these
variables simultaneously alters both the applied loads and the structural response. This
strong interdependence underscores the necessity for optimization strategies that can
handle the mutual influence of objectives and constraints in a tightly integrated, itera-
tive manner.

The remainder of the paper is organized as follows: Section 2 formulates the weight
optimization problem and design constraints; Section 3 presents the finite element
analysis; Section 4 discusses the strength constraints; Section 5 compares two con-
straint formulations; Section 6 derives a fully analytical sensitivity analysis; Section
7 demonstrates the approach on numerical benchmarks; and Section 8 concludes with
key findings.
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2 Weight optimisation

The goal of structural weight optimization is to minimize the total weight of the struc-
ture while satisfying geometric and mechanical constraints. In this work, we con-
sider a beam structure with fixed geometry, where all members share identical cross-
sectional and material properties along their length. For simplicity, and to isolate the
effect of self-weight, all members are assumed to have the same cross-section. How-
ever, the proposed methodology can be extended to allow individual cross-section
optimization for each member, at the cost of introducing additional design variables.

Under this assumption, the total structural weight m(a) is given by

m(a) := A(a)
ne∑
i=1

liρi, (1)

where a ∈ Rnp is the vector of geometric parameters, A(a) is the cross-sectional
area, li > 0 and ρi > 0 denote the length and material density of the i-th member,
respectively, and ne is the total number of members.

The vector a encodes the geometric properties of the cross-section. The number
of parameters np depends on the selected cross-section type and its parametric model.
For instance, square and circular sections are often described by a single parameter,
while rectangular and pipe sections require two. More complex profiles, such as I-
shaped sections, may require four to six parameters.

To ensure physically meaningful designs, the geometric parameters are subject to
a set of inequality constraints:

cg(a) ≤ o, (2)

where cg(a) ∈ Rng is the vector of ng geometric constraints, and o is the zero vector
of appropriate dimension. These constraints enforce both lower and upper bounds on
each parameter and may also include relationships between them. For example, in a
rectangular section, both width b ∈ R and height h ∈ R must be strictly positive e.g.

A(b, h) = bh (3)

0 ≤ bmin ≤ b, 0 ≤ hmin ≤ h (4)

Such conditions are essential to exclude non-physical or impractical designs.
The geometric optimization problem can thus be formulated as

min
a∈Rnp

m(a)

subject to cg(a) ≤ 0.
(5)

Since the vector a typically governs thicknesses or component dimensions, mini-
mizing m(a) naturally drives the solution toward the zero vector. This corresponds
to a vanishing cross-sectional area and a structure with negligible weight, which is
physically meaningless.
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To obtain meaningful designs, additional constraints related to structural perfor-
mance must be imposed. These typically limit internal stresses, displacements, or
other response quantities under loading. Since such responses depend nonlinearly on
a and are rarely available in closed form, we evaluate them numerically using the
finite element method (FEM) [3]. The resulting quantities are incorporated into the
optimization problem as constraints ensuring strength, stiffness, and serviceability.

3 Structural analysis via FEM

The objective of structural optimization is to reduce the structure’s weight while ensur-
ing its strength and serviceability requirements are met. To assess structural behavior,
we use the FEM, which solves the discretized total potential energy of the system.
FEM is particularly well suited for the beam structures considered in this work, where
all elements share uniform cross-sectional and material properties.

The structural equilibrium problem is formulated as the minimization of the total
potential energy

min
r∈Rnd

1

2
r⊤K(a)r− r⊤f(a), (6)

which is equivalent to the linear system

K(a)r = f(a), (7)

where K(a) ∈ Rnd×nd is the symmetric positive-definite global stiffness matrix,
f(a) ∈ Rnd is the global load vector, and r ∈ Rnd is the vector of nodal displacements.
The number of degrees of freedom is denoted by nd, and both K(a) and f(a) depend
on the geometric design vector a. In this work, the terms displacement and force are
used in a generalized sense. That is, displacement vectors include both translational
displacements and rotations, while force vectors include both forces and moments.

The global stiffness matrix is assembled from elemental contributions

K(a) :=
ne∑
i=1

L⊤
i T

⊤
i Ke,i(a)TiLi, (8)

where Ke,i ∈ R6×6 is the local stiffness matrix of element i, Ti ∈ R6×6 is the trans-
formation matrix from local to global coordinates, and Li ∈ R6×nd is the boolean
allocation matrix.

For 2D Euler–Bernoulli beam elements, the local stiffness matrix is given by

Ke,i(a) = A(a)Ke,T,i + I(a)Ke,E,i, (9)

where A(a) is the cross-sectional area and I(a) is the second moment of area. The ma-
trices Ke,T,i and Ke,E,i represent the contributions from axial deformation and bend-
ing, respectively, and are independent of the design variables a [3, 11].
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As these matrices are constant with respect to the design variables, the local stiff-
ness matrix Ke,i(a) depends solely on the geometric quantities A(a) and I(a).

Under the assumption of a single cross-section for all elements, the global stiffness
matrix K(a) simplifies to

K(a) = K̂(a) := A(a)K̂T + I(a)K̂E. (10)

where

K̂T :=
ne∑
i=1

L⊤
i T

⊤
i Ke,T,iTiLi, K̂E :=

ne∑
i=1

L⊤
i T

⊤
i Ke,E,iTiLi. (11)

3.1 Load vector due to self-weight

The global load vector is similarly assembled from element contributions

f(a) :=
ne∑
i=1

L⊤
i T

⊤
i floc,i(a), (12)

where floc,i(a) ∈ R6 is the local load vector of the i-th element. This vector is defined
as

floc,i(a) := Fg,iqloc,i(a), (13)

with

Fg,i :=


−li/2 0
0 −li/2
0 −l2i /12

−li/2 0
0 −li/2
0 l2i /12

 , qloc,i(a) :=

[
nloc,i(a)
qloc,i(a)

]
. (14)

Here, Fg,i ∈ R6×2 is the consistent load shape matrix that distributes axial and trans-
verse loads to the element’s nodal degrees of freedom. The vector qloc,i(a) ∈ R2

contains the distributed loads in the local coordinate system, where nloc,i(a) ∈ R and
qloc,i(a) ∈ R denote the axial and transverse components, respectively.

Assuming gravity acts in the global vertical direction, the transverse component of
self-weight in global coordinates is given by

qi(a) := A(a)ρig, (15)

where g is the gravitational acceleration. This load is then transformed into the local
coordinate system as

qloc,i(a) := tiqi(a), ti :=

[
sin(βi)
cos(βi)

]
, (16)

where ti ∈ R2 is a direction vector that projects the vertical self-weight onto the local
coordinate axes of the element, and βi is the inclination angle of element i.
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Substituting expressions (15) and (16) into (13), we obtain the simplified local load
vector

floc,i(a) = f̂loc,i(a) := A(a)ρigFg,iti. (17)

Inserting this into the global load vector expression (12) yields the compact form

f(a) = f̂(a) := A(a)f̂g, (18)

where

f̂g :=
ne∑
i=1

ρigL
⊤
i T

⊤
i Fg,iti. (19)

3.2 Internal force recovery

Since the global stiffness matrix K(a) is symmetric and positive definite, guaranteed
by cg(a), the displacement vector r has a unique solution for any given load vector. In
particular, the displacement field is an implicit function of the design variables and is
given by

r(a) = K−1(a) f(a), (20)

Once the displacements are known, the nodal forces in each element can be com-
puted as

fe,i(a) =


N1,i(a)
V1,i(a)
M1,i(a)
N2,i(a)
V2,i(a)
M2,i(a)

 := Ke,i(a)TiLi r(a) + f̂loc,i(a), (21)

where fe,i(a) ∈ R6 contains the axial forces N1,i, N2,i, shear forces V1,i, V2,i, and
bending moments M1,i, M2,i at the start and end nodes of element i.

For elements subjected to distributed self-weight, the internal force distributions
along the element are given by

Ni(a, xi) = N1,i(a)− nloc,i(a)xi, (22)
Vi(a, xi) = V1,i(a)− qloc,i(a)xi, (23)

Mi(a, xi) = M1,i(a) + V1,i(a)xi −
qloc,i(a)

2
x2
i , (24)

where xi ∈ [0, li] is the distance from the first node,
The axial force and shear force vary linearly along the element, with their extreme

values occurring at the element nodes. In contrast, the bending moment exhibits a
quadratic distribution and typically reaches its maximum at an interior point. This
critical point is obtained by differentiating the moment function with respect to xi and
solving

xcrit,i(a) =
V1,i(a)

qloc,i(a)
. (25)

6



Substituting this value into the moment expression yields the critical bending moment

Mcrit,i(a) := Mi(a, xcrit,i) = M1,i(a) + V1,i(a)xcrit,i(a)−
qloc,i(a)

2
x2

crit,i(a). (26)

Each of the internal forces computed from the finite element analysis is subse-
quently evaluated against its corresponding resistance function, ensuring that the cross-
section provides adequate capacity to withstand both self-weight and any additional
applied loading.

4 Structural resistance constraints

To ensure structural safety under the ultimate limit state (ULS), the internal forces in
each element must not exceed the corresponding resistance capacities of the cross-
section. Strength verification is carried out for axial force, shear force, and bending
moment, based on the internal force distributions obtained from the finite element
analysis.

The resistance of element i is characterized by three functions: axial resistance
NRd,i(a) ≥ 0, shear resistance VRd,i(a) ≥ 0, and bending resistance MRd,i(a) ≥
0. These functions are assumed to be nonnegative and depend solely on the cross-
sectional geometry a. They are considered known and reflect standard code-based
strength criteria [1]. In this work, NRd,i(a), VRd,i(a), and MRd,i(a) represent the total
design resistance, accounting for both material strength and stability effects, including
buckling and lateral-torsional buckling.

From the finite element solution, the corresponding design internal forces are ex-
tracted for each element i, namely the axial force NEd,i(a), shear force VEd,i(a), and
bending moment MEd,i(a), representing the most critical values relevant to ULS veri-
fication. For instance, MEd,i(a) = Mcrit,i(a).

The resulting strength constraints for each element i are given by

|NEd,i(a)| ≤ NRd,i(a), |VEd,i(a)| ≤ VRd,i(a), |MEd,i(a)| ≤ MRd,i(a). (27)

These scalar inequalities define the bounded format, where internal forces are di-
rectly compared to resistance values in absolute terms. To express these ULS con-
ditions compactly, the element-wise constraints are assembled into a local constraint
vector

cULS,i(a) :=

 |NEd,i(a)| −NRd,i(a)
|VEd,i(a)| − VRd,i(a)
|MEd,i(a)| −MRd,i(a)

 ≤ 0, (28)

and assembled globally as

cULS(a) :=

 cULS,1(a)
...

cULS,ne(a)

 ≤ 0. (29)
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This constraint formulation defines the feasible design space with respect to strength,
ensuring that the cross-section can resist all internal forces due to self-weight and ap-
plied loads.

5 Influence of constraint formulation

Consider a simply supported beam subjected only to its self-weight. For a square
cross-section with side length b ∈ R, the critical bending moment due to self-weight
scales with the square of the cross-sectional dimension

Mcrit(b) = c1b
2, (30)

where c1 > 0 is a constant independent of b. The bending resistance scales with the
section modulus, which for a square cross-section behaves like

MRd(b) = c2b
3, (31)

with c2 > 0, also independent of b.
Imposing the bounded strength condition (27) yields

c1b
2 ≤ c2b

3. (32)

Assuming c1 = c2 = 1 for simplicity, this reduces to

fB(b) := b2 − b3 ≤ 0. (33)

The feasible region defined by this inequality is illustrated in Figure 1. The func-
tion fB(b) increases for small values of b, attains a maximum near b ≈ 0.66, and
then decreases for b > 0.66. Consequently, in the region b < 0.66, the local gradient
is positive, and linear approximations may misleadingly suggest that decreasing b im-
proves feasibility. However, this direction leads toward smaller values of b, potentially
violating the constraint as b → 0.

This illustrates a common pitfall in nonlinear programming: although the original
constraint fB(b) ≤ 0 is satisfied for b ≥ 1, a naive gradient-based step taken near
b = 0.5 may misinterpret the constraint’s local behavior and drive the design into an
infeasible region.

To mitigate this issue, the constraint fB(b) can be reformulated in the relative for-
mat. By normalizing with respect to the design capacity MRd(b), we obtain

fR(b) :=
b2

b3
− 1 =

1

b
− 1 ≤ 0. (34)

This concept generalizes naturally to internal force constraints in structural opti-
mization. Based on the bounded formulation (32), the relative format leads to

|NEd,i(a)|
NRd,i(a)

− 1 ≤ 0,
|VEd,i(a)|
VRd,i(a)

− 1 ≤ 0,
|MEd,i(a)|
MRd,i(a)

− 1 ≤ 0. (35)
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Figure 1: Bounded format constraint fB(b), with local maximum at b ≈ 0.66.

Figure 2 compares the bounded and relative formulations. While both define the
same feasible set, their analytical behavior differs markedly. As b → 0, the rela-
tive constraint becomes increasingly steep, with unbounded gradients that may lead
to numerical instability. Conversely, for large b, the constraint flattens and becomes
nearly inactive, transferring optimization effort to other conditions, such as geometric
constraints.

-1 0 1 2 3 4

b

-2

-1

0

1

2

f(
b

)

Relative

Bounded

Figure 2: Comparison of constraint behavior for the bounded fB(b) and relative fR(b)
formulations.

In contrast, the bounded formulation maintains constraint activity for large cross-
sections, effectively penalizing over-design. However, it suffers near b = 0, where
strong nonconvexity and vanishing gradients can impair linearization and misguide
the search direction.

To assess implementation complexity, we compare the derivatives of the bounded
(27) and the relative (35) constraint for axial force

∂cB(a)

∂aj
=

∂NEd,i(a)

∂aj
− ∂NRd,i(a)

∂aj
, (36)
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∂cR(a)

∂aj
=

∂NEd,i(a)

∂aj
NRd,i(a)−NEd,i(a)

∂NRd,i(a)

∂aj
N2

Rd,i(a)
. (37)

Both formats rely on the same underlying derivatives of internal forces and resis-
tance functions. Therefore, their implementation cost is effectively equivalent. The
choice between bounded and relative formulations can thus be guided by numerical
behavior and optimization performance, rather than by derivative complexity.

6 Sensitivity analysis and gradient evaluation

Based on the structural model and strength constraints defined in the previous sections,
the size optimization problem is now formulated as

min
a

m(a)

subject to c(a) ≤ 0,
(38)

where the constraint vector c(a) ∈ Rnc groups together the geometric and strength-
related conditions

c(a) =

[
cg(a)

cULS(a)

]
. (39)

To solve this nonlinear programming problem using gradient-based optimization,
the constraints are linearized using first-order Taylor expansions around the current
design iterate a0 ∈ Rnp . The j-th component of the constraint vector c(a), denoted
cj(a), is approximated as

cj(a) ≈ cj(a0) +∇cj(a0)
⊤(a− a0) ≤ 0, (40)

where the gradient ∇cj(a0) ∈ Rnp contains the partial derivatives of cj(a) with respect
to the design variables

∇cj(a) =

[
∂cj
∂a1

,
∂cj
∂a2

, · · · , ∂cj
∂anp

]⊤
. (41)

Among all constraints, the most complex to linearize is the one involving the crit-
ical bending moment Mcrit,i(a), defined in (26). This quantity depends nonlinearly
on the internal forces M1,i(a), V1,i(a), the self-weight-induced load qloc,i(a), and the
critical location xcrit,i(a).

The derivative of Mcrit,i with respect to the design variable aj is given by:

∂Mcrit,i(a)

∂aj
=

∂M1,i(a)

∂aj
+

∂

∂aj
(V1,i(a)xcrit,i(a))−

1

2

∂

∂aj

(
qloc,i(a)x

2
crit,i(a)

)
. (42)

Using the product rule, the two remaining derivatives expand as

∂

∂aj
(V1,i(a)xcrit,i(a)) =

∂V1,i(a)

∂aj
xcrit,i(a) + V1,i(a)

∂xcrit,i(a)

∂aj
, (43)
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∂

∂aj

(
qloc,i(a)x

2
crit,i(a)

)
=

∂qloc,i(a)

∂aj
x2

crit,i(a) + 2qloc,i(a)xcrit,i(a)
∂xcrit,i(a)

∂aj
. (44)

The derivative of the critical location xcrit,i(a), from equation (25), is

∂xcrit,i(a)

∂aj
=

∂V1,i(a)

∂aj
qloc,i(a)− V1,i(a)

∂qloc,i(a)

∂aj
q2loc,i(a)

. (45)

The shear force V1,i(a) and bending moment M1,i(a) are components of the internal
nodal force vector fe,i(a), computed using

∂fe,i(a)

∂aj
=

∂

∂aj
(Ke,i(a)Ti Li r(a)) +

∂floc,i(a)

∂aj
. (46)

Applying the chain rule to the stiffness-displacement product gives

∂

∂aj
(Ke,i(a)Ti Li r(a)) =

∂Ke,i(a)

∂aj
TiLi r(a) +Ke,i(a)TiLi

∂r(a)

∂aj
. (47)

The element stiffness matrix depends on cross-sectional area A(a) and moment of
inertia I(a), via

∂Ke,i(a)

∂aj
=

∂A(a)

∂aj
Ke,T,i +

∂I(a)

∂aj
Ke,E,i. (48)

The derivative of self-weight load follows directly

∂floc,i(a)

∂aj
= ρigFg,i ti

∂A(a)

∂aj
. (49)

The displacement vector r is obtained by solving the global system and differenti-
ated as

∂r(a)

∂aj
= K−1(a)

(
∂ f̂(a)

∂aj
− ∂K̂(a)

∂aj
r(a)

)
, (50)

where K−1(a) is positive definite. The derivatives of the load and stiffness matrices
are

∂ f̂

∂aj
=

∂A

∂aj
f (1)g, (51)

∂K̂(a)

∂aj
=

∂A(a)

∂aj
K̂T +

∂I(a)

∂aj
K̂E. (52)

Despite the multiple steps involved, the linearized constraint (40) offers notable
computational advantages. Since the constraint is evaluated at the current design it-
erate a0, the value cj(a0) is readily available. More importantly, many intermediate
quantities, such as the displacement vector r(a0), internal element forces fe,i(a0), and
distributed loads, are already computed during this evaluation and can be efficiently

11



reused in assembling the gradient ∇c(a0). This reuse significantly reduces the com-
putational overhead of gradient evaluation.

In addition, all components of the gradient are computed analytically, which en-
hances numerical accuracy and robustness compared to approximate methods like
finite differences. Together, the reuse of intermediate results and the use of exact
analytical derivatives ensure that the overall gradient evaluation remains both precise
and computationally efficient.

7 Numerical benchmark

In the following numerical benchmarks, we examine the optimization behavior of
structural members with rectangular cross-sections, parameterized by width and height
(np = 2). The goal is to minimize total structural weight while satisfying ULS con-
straints. Both the bounded and relative formulations of the ULS conditions are inves-
tigated.

All simulations are carried out for structural steel with density ρ = 7850 kg/m3,
Young’s modulus E = 210× 109 Pa, yield strength fy = 235× 106 Pa, and Poisson’s
ratio ν = 0.3. The design checks include axial tension, compression, shear, and bend-
ing resistance, as well as in-plane buckling and lateral–torsional buckling, following
the provisions of EN 1993-1-1 [1]. Resistance functions are defined for each beam
element based on its geometry and loading and are applied consistently across both
constraint formulations. All structural members are checked to ensure compliance
with ULS criteria throughout the optimization.

To evaluate the behavior of each ULS formulation, we conduct optimization runs
from multiple initial design points a0, ranging from undersized to oversized configura-
tions. The initial designs are selected from the set a0 ∈ [0.001, 1] m, applied uniformly
to all components of a0. For each case, we track the number of constraint evaluations,
the number of linearizations, and overall convergence behavior, assessing the sensi-
tivity of both formulations to the choice of starting point. All optimization problems
are solved using the inexact restoration (IR) method. The implementation follows
the framework described in [11], which provides robust performance for constrained
nonlinear problems, especially when handling nonconvex or nonlinearly constrained
formulations like those encountered in structural design.

7.1 Simply supported beam

The first benchmark considers a simply supported beam with a span of l = 6m, sub-
jected to self-weight, as illustrated in Figure 3. The structure is statically determinate,
meaning that the internal forces depend solely on geometry and loading, and are inde-
pendent of cross-sectional stiffness.

The bending moment distribution follows a parabolic profile and reaches its maxi-
mum at midspan. In this configuration, the critical bending moment admits a closed-
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Figure 3: Simply supported beam of span 6 m, loaded by self-weight.

form analytical expression.
This benchmark serves as a minimal yet informative test case. It isolates the influ-

ence of self-weight in the optimization process, fully decoupled from stiffness-related
effects. As such, it provides a clean setting for examining the numerical behavior of
the bounded and relative ULS formulations under analytically tractable conditions.

The results of the optimization runs, reported in Table 1, summarize the number of
constraint evaluations and linearizations for each formulation.

a0 Bounded Relative
[m] Eval. Lin. Eval. Lin.

0.001 Failed 32 22
0.0025 Failed 26 18
0.005 Failed 20 14

0.0075 Failed 17 12
0.01 Failed 14 10

0.025 12 7 16 11
0.05 15 8 34 23

0.075 20 11 34 23
0.1 22 12 34 23

0.25 28 15 34 23
0.5 32 17 34 23

0.75 34 18 36 24
1 34 18 36 24

Table 1: Convergence results for the simply supported beam. ‘Eval.’ = number of con-
straint evaluations, ‘Lin.’ = number of constraint linearization. The bounded
formulation fails to converge for very small initial sizes (marked as Failed).

For initial designs with a0 < 0.025, the bounded formulation fails to converge. The
linearized ULS constraints are locally infeasible in this region, as illustrated in Fig-
ure 1. In contrast, the relative formulation remains well-posed and converges reliably
across the full range of initializations.

As the initial design size increases, the number of iterations required by the relative
formulation also increases, but only up to a point. For sufficiently large a0, the ULS
constraints become inactive due to high initial feasibility. The optimization is then
governed primarily by geometric constraints. This behavior reflects the flattening of
the relative constraint for large cross-sections, shown in Figure 2.
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In such cases, the optimizer reduces the cross-section size rapidly. The resulting
convergence behavior closely resembles that observed for small initial designs.

7.2 U-shaped structure

The second benchmark considers a U-shaped frame, subjected to self-weight, consist-
ing of three rigidly connected segments: two vertical members and a horizontal base,
as shown in Figure 4. The vertical legs are fixed at their upper ends, while the hor-
izontal member spans 10m. The vertical heights of the legs are 3.6m and 100.0m,
respectively, creating a highly asymmetric frame with significant stiffness imbalance.

Figure 4: Asymmetric U-shaped frame with fixed supports at the top ends and uni-
formly distributed self-weight along the horizontal member. The configura-
tion introduces stiffness-coupled load redistribution.

This configuration introduces structural indeterminacy, as the internal forces now
depend on both the external loading and the relative stiffness of the members. Unlike
the simply supported beam, the critical bending moment here is not known a priori—it
emerges from the interaction between segments, and its location and magnitude are
influenced by the geometric parameters of the cross-section. As such, both equilibrium
and resistance become coupled to the design variables.

The indeterminate nature of the system creates additional challenges for optimiza-
tion. Even though the applied load remains self-weight, its distribution through the
structure depends on stiffness, making the structural response sensitive to cross-sectional
changes. This benchmark therefore provides a more realistic and demanding test
case, capturing the nonlinear behavior of ULS constraints in the presence of stiffness-
induced load redistribution.

By comparing the bounded and relative formulations across a range of initial de-
signs, we evaluate how each format handles stiffness-coupled sensitivities, local non-
convexities, and varying constraint activity throughout the optimization process. The
results of these optimization runs—including the number of constraint evaluations
and linearizations—are summarized in Table 2, providing a direct comparison of the
computational behavior of both formulations.

In the U-shaped structure, a similar trend to the simply supported beam is observed.
As a0 increases, the number of constraint evaluations and linearizations rises sharply.
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The bounded formulation fails to converge for very small initial designs due to in-
feasible linearizations. However, it remains robust for larger initial values, though it
typically requires more iterations than the relative formulation.

Near the optimal value around a0 = 0.025, the bounded formulation converges
more quickly. It requires fewer linearizations than the relative approach, This high-
lights its potential efficiency when the initial design is well-scaled.

a0 Bounded Relative
[m] Eval. Lin. Eval. Lin.

0.001 Failed 47 26
0.0025 Failed 38 20
0.005 Failed 36 18

0.0075 Failed 33 16
0.01 Failed 19 13

0.025 21 14 33 17
0.05 27 17 49 27

0.075 32 20 49 27
0.1 38 24 49 27

0.25 37 22 49 27
0.5 53 32 49 27

0.75 92 57 51 28
1 117 70 51 28

Table 2: Convergence results for the U-shaped structure. ‘Eval.’ = number of con-
straint evaluations, ‘Lin.’ = number of constraint linearization. The bounded
formulation fails to converge for very small initial sizes (marked as Failed).

8 Conclusion

This study examined the impact of self-weight and constraint formulation on the size
optimization of beam structures under ULS criteria. A gradient-based optimization
framework was developed using first-order constraint linearization, with full analytical
sensitivity computation for both bounded and relative ULS constraint formats.

Two benchmark problems were considered: a simply supported beam with known
analytical behavior and a statically indeterminate U-shaped frame where stiffness in-
fluences internal force redistribution. Across a range of initial designs, the numerical
performance of both constraint formats was evaluated in terms of convergence behav-
ior, constraint activity, and computational efficiency.

The results highlight a key trade-off between the two formulations. The bounded
format maintains strong constraint gradients for large, over-designed sections, but suf-
fers from nonconvexity and poor linearization near undersized configurations. Con-
versely, the relative format exhibits more consistent behavior near optimal designs
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and avoids local infeasibility, but can become inactive in oversized regimes due to
vanishing gradients.

Despite having similar implementation costs, the two formulations exhibit distinct
numerical characteristics. The choice between them should be guided by the expected
design regime and optimization robustness requirements. For problems dominated
by self-weight and geometry-sensitive responses, the relative format offers a more
reliable convergence path, while the bounded format may better maintain constraint
activity in large-scale designs.
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