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Abstract 
 

Multi-fidelity surrogate modelling methods have gained significant attention in 

engineering optimization, as they can achieve high accuracy at a reduced 

computational cost. However, to construct a high-performing multi-fidelity surrogate 

model, it is essential to accurately capture the correlation between the high-fidelity 

and low-fidelity models. In this paper, we propose a novel Kriging-based multi-

fidelity surrogate model. The proposed method tunes the low-fidelity Kriging model 

to capture both the linear and nonlinear correlations with the high-fidelity data, 

enabling a close approximation to the high-fidelity model. Then, a suitable surrogate 

model for the discrepancy data is selected from among the Kriging model and the 

polynomial regression model. The basis functions for the Kriging model and the 

discrepancy Kriging model are included as part of the hyperparameter optimization. 

All hyperparameters are optimized simultaneously using a metaheuristic algorithm to 

ensure that all complex relationships between hyperparameters are considered. The 

proposed method demonstrates superior performance and robustness in analytical 

problems. 
 

Keywords: multi-fidelity, surrogate model, optimization, kriging, metaheuristic, 

leave one out cross validation, correlation coefficient. 
 

1  Introduction 
 

With the advancement of simulation technologies, high-fidelity (HF) simulations are 

widely used to solve complex engineering problems. However, due to their high 

computational cost, they are often unsuitable for tasks such as optimization. To 

address this, surrogate models have been widely adopted as computationally efficient 
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alternatives to HF simulations. Ensuring the accuracy of a surrogate model typically 

requires a sufficient amount of HF data. However, in many cases, limited resources 

make it difficult to obtain enough HF data, which in turn hampers the accuracy of the 

surrogate model. To overcome this issue, multi-fidelity (MF) modelling approaches 

have been proposed and extensively studied in recent years [1]. 
 

Among various MF modelling approaches, the comprehensive framework is 

generally known to offer the best performance. In this framework, low-fidelity (LF) 

model is first constructed, and then a model is trained on the discrepancy between the 

HF data and the LF model. The HF model is composed of the LF model added with 

the discrepancy model. A widely used formulation of the comprehensive framework 

is as follows: 
 

 ( ) ( ) ( ) ( )ˆˆ ˆ
HF LFy x x y x x = +  (1) 

 

where ( )ˆ
HFy x and ( )ˆ

LFy x  represent the HF model and LF model, respectively. 

( )x  represents the scaling factor, and ( )ˆ x  is the discrepancy model. This 

framework relies on both the LF model and the discrepancy model being accurately 

constructed to ensure the overall performance of the HF model. However, if the 

correlation between the LF and HF models is not properly captured, the discrepancy 

model may be poorly constructed, making it difficult to ensure the accuracy of the HF 

model. Therefore, accurately capturing the correlation between the LF and HF models 

is essential in multi-fidelity surrogate (MFS) modelling, as it enables the proper 

construction of both the LF model and the discrepancy model. 
 

In comprehensive framework, it is necessary to optimize the hyperparameters 

scaling factor and discrepancy model. The performance of the MFS model is highly 

dependent on how these values are optimized. Mainly, Bayesian-based MFS models 

[2, 3, 4, 5] use maximum likelihood estimation (MLE) for optimization metric. In this 

case, the scaling factor   and hyperparameter   of discrepancy model are 

determined through the following equation [4]: 
 

 ( )2

,

1
ˆ ˆ, arg max ln ln

2 2

N



  
 

   = − −
 

θ R  (2) 

 

where N is the number of the HF sample data, R  is the correlation matrix and 2ˆ
  is 

the process variance.  
 

Another widely used estimation for determining the scaling factor in MFS models 

is the mean squared error (MSE) [3]. The common approach for optimizing scaling 

factor   is to minimize the error between the HF data and the scaled LF model, which 

can be expressed as follows: 
 

 ( ) ( )
2

1

ˆ ˆarg min
N

i i

LF HF

i

y x y x


 
=

 = −
   (3) 

 

where ( )HFy   represents the HF output, and ( )ˆ
LFy   represent the prediction of the LF 

model. N is the number of the HF data, and ix  represents the i -th input. However, 
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simply optimizing the MLE or MSE does not sufficiently account for the bumpiness 

of the discrepancy model, which can lead to poor accuracy [6]. 
 

2  Methods 
 

In this paper, we propose a new formulation based on the comprehensive framework 

by introducing additional hyperparameters to more effectively tune the LF model to 

closely match the HF model. For the LF model, the Kriging is used to train the LF 

data. The Kriging trained on LF data is optimized to maximize the MLE with LF data 

to derive the hyperparameter LFθ . The  LFθ  in LF Kriging is tailored to the 

information in the LF data and may be different from 
HFθ , which is optimized by 

training the Kriging on efficient number of HF data. In general, the LF data may differ 

from the HF data but follow a similar trend. Thus, the trend of LFθ  in the Kriging 

model trained on LF data is expected to be similar to the trend of HFθ  in the Kriging 

model trained on HF data. To explore the relationship between 
HFθ  and LFθ , we 

utilize one of the benchmark test functions, the six-dimensional Rosenbrock function. 

The HF function hy  and the LF function ly  are defined in Table 1. The HFθ  of the 

Kriging trained on HF data and the LFθ  of the Kriging trained on LF data in the 

Rosenbrock function are plotted as shown in Figure 1.  

 
 

 

 
 

Note that the scale of the i -th θ  values for HFθ  and LFθ  is different, but the trend 

follows a similar path. Therefore, by scaling LFθ , it becomes possible to adjust the 

smoothness of the LF Kriging model to better align with the HF data. Based on this, 

we propose a new formulation that allows additional tuning of the Kriging 

hyperparameter θ  as follows: 
 

 ( ) ( )( ) ( )0
ˆˆ ˆ ,n m

HF LF LFy x y x x  = +θ θ  (4) 
 

Figure 1: Kriging hyperparameter  values by fidelity of the Rosenbrock function. 
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where ( )ˆ
HFy   represents the HF model, ( )ˆ

LFy   is the LF Kriging model, and ( )̂   

denotes the discrepancy model. 
0θ is the initial LF Kriging hyperparameter, and 

0( )LFθ θ  represents the LF Kriging hyperparameter optimized using MLE by training 

the LF data, with 
0θ  as the starting point. The   is a hyperparameter that scale the 

LFθ , and   is a hyperparameter that scales the LF Kriging model. The n  represents 

the type of basis function used in the LF Kriging model, and m  denotes the type of 

surrogate model used in the discrepancy model, both serving as hyperparameters. The 

type of surrogate model is selected from the discrepancy model library, which 

includes Kriging model with different basis functions and the polynomial regression 

models. Thus, there are five hyperparameters to be optimized in the proposed method. 

All hyperparameters are optimized using genetic algorithm (GA), one of the 

metaheuristic algorithms suitable for solving complex problems [5]. We optimized 

the hyperparameters using leave one out cross validation (LOOCV) 
2

MAE

r
 as a new 

objective function. Here, MAE denotes the mean absolute error, and 2r  represents the 

square of the Pearson correlation coefficient. Optimizing the hyperparameters to 

minimize this objective function yields optimized hyperparameters that minimize 

MAE and maximize 2r  between the HF samples and the proposed method. 

 
 

3  Results 
 

In this paper, we validate the proposed method through four analytical problems. The 

sample points are generated using latin hypercube sampling (LHS), which ensures 

effective coverage of the design space. The number of samples is determined based 

on a cost, where the total computational budget is defined as 40+5D, with D 

representing the number of design variables [7]. The cost of one HF sample is set to 

1, and that of an LF sample is set to 0.2 [7]. In this study, the cost allocation ratio 

between HF and LF data is set to 0.6:0.4, which falls within the recommended range 

for effective MFS modelling as suggested in [8]. To account for the stochastic nature 

of LHS, 20 different DOE sets are generated and used to evaluate the MFS models. 

For performance evaluation, a validation set composed of 1000 HF samples is 

employed. The predictive performance is assessed using the coefficient of 

determination ( 2R ) and the normalized root mean squared error (NRMSE). The 

formulation of 2R  and NRMSE are as follows: 
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2

2 1

2
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where N is the total number of test samples, iy  and ˆ iy  denote the actual output and 

the predicted value of surrogate model, respectively, and y  is mean of actual outputs. 

The 
maxy  and 

miny  are the maximum and minimum values of the actual outputs, 

respectively.  
 

We demonstrate the performance of the proposed method by comparing the state-

of-the-art methods and major widely used methods in of MFS modelling with the 

proposed method through the analytical problems. We selected the following MFS 

modelling methods for comparison: co-kriging (CO-KRG) [9], output scaling-MFS 

(OS-MFS) [5], multi-fidelity neural network (MF-NN) [10], and linear regression 

MFS (LR-MFS) [11]. Additionally, a single-fidelity kriging (SF-KRG) using only HF 

data was created and compared with the same cost of sample data used in the MFS 

models. 
 

We validate the performance of proposed method using four analytical problems. 

These problems range from low to high dimensions and include various levels of 

nonlinearity to evaluate the effectiveness of MFS models. As shown in Table 1, 

selected examples include test functions commonly used in various research papers 

[12, 13]. 
 

Table 1: The expression of analytical problems. 
 

The results of evaluating the performance metrics for both the proposed method and 

the comparison method are shown in Figure 2 as a box plot, and the averages of the 

performance metrics are shown in Table 2. From the results, we can see that the 

proposed method performs well on all analytical problems. CO-KRG, which is a 

 HF/LF Test functions Domain 

Bird 

(2D) 

HF 
( ) ( )( ) ( )( )

( )

2 2

2 11 cos 1 sin

1 2

2

1 2

sin cos( )
x x

hy x e x e

x x

− −
= +

+ −

 
 2 , 2 −  

LF 1 20.9 2l hy y x x= −  

Rastrigin 

(3D) 

HF ( )
1

2

1

10 10cos 2
d

h i i

i

y d x x
−

=

 = + −   

 1,1−  

LF ( )
1

2

1

10 0.8 10cos 1.7
d

l i i

i

y d x x
−

=

 = + −    

Rosenbrock 

(6D) 

HF ( ) ( )
1

2 22

1

1

100 1
d

h i i i

i

y x x x
−

+

=

 = − + −
    

 5,10−  

LF ( ) ( )
1

2 33

1

1

100 0.1 3 3
d

l i i i

i

y x x x
−

+

=

 = − + −
    

Styblinski-

Tang 

(10D) 

HF 
10

4 2

1

16 5i i i

i

hy x x x
=

− +=  

 3, 3−  

LF 
10

3 2

1

16 5l i i i

i

y x x x
=

= − +  
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popular MFS model, is the next best performer. MF-NN failed to learn the Rosenbrock 

function and Styblinski-Tang function, which is likely due to the difficulty of securing 

the performance of neural networks with limited data [14]. This confirms that the 

proposed method performs robustly on examples with various nonlinearities in 

multiple dimensions 

 

 

Figure 2: Box plot of performance results for the analytical problems; (a) Brid 

(2D), (b) Rastrigin (3D), (c) Rosenbrock (6D), (d) Styblinski-Tang (10D). 
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Table 2: Results of performance metrics in analytical problems. 

 
 
 

4  Conclusions and Contributions 
 

In this paper, we propose a multi-fidelity Kriging-based surrogate modelling approach 

with a novel formulation. The method involves five key hyperparameters: initial 

Kriging hyperparameter ( 0θ ), scaling factor (  ,  ), type of basis function in LF 

Kriging model ( n ) and type of surrogate model in discrepancy model ( m ). All 

hyperparameters were optimized using GA to optimize for complex interactions. This 

ensures that the LF Kriging model aligns as closely as possible with the HF model 

and that the best model for the discrepancy data is selected. In doing so, we found that 

the proposed method robustly outperforms other MFS models on a variety of 

analytical problems.  
 

 In this paper, a new formulation is proposed to further optimize θ , the main 

hyperparameter that determines the performance of Kriging, in a comprehensive 

framework. In addition, LOOCV 
2

MAE

r
 is used as an optimization objective function 

to optimize various hyperparameters more robustly. The proposed formulation and 

objective function can be easily modified and applied to other studies. 
 

 The proposed method has a high computational cost compared to other techniques 

because it optimizes multiple hyperparameters through GA. In future work, it is 

necessary to exploit the hyperparameter optimization strategy to reduce this 

computational cost. 
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Test 

functions 
Metrics 

SF-

KRG 

LR-

MFS 

CO-

KRG 

MF-

NN 

OS-

MFS 
Proposed 

Bird 

(2D) 

2R  0.8395 0.6251 0.9184 0.8789 0.8680 0.9678 

NRMSE 0.0670 0.1031 0.0471 0.0583 0.0585 0.0295 

Rastrigin 

(3D) 

2R  0.2960 0.4713 0.7346 0.6263 0.7198 0.8114 

NRMSE 0.1699 0.1473 0.1037 0.1223 0.1061 0.0872 

Rosenbrock 

(6D) 

2R  0.7655 0.7293 0.8479 0.0091 0.8169 0.8966 

NRMSE 0.0829 0.0898 0.0668 0.3403 0.0736 0.0549 

Styblinski-

Tang 

(10D) 

2R  0.5407 0.4498 0.9073 0.0695 0.4817 0.9128 

NRMSE 0.1110 0.1220 0.0500 0.1620 0.1342 0.0485 
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