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Abstract 
 

The thermo-elastic cyclic-symmetric structures such as turbine disks in aerospace 

engines operate under complex loading conditions, requiring precise burst speed 

analysis to balance safety and lightweight design. This study introduces a novel 

topology optimization framework that integrates mean circumferential/radial stress 

constraints derived from burst speed requirements, addressing the limitations of 

conventional retrospective validation methods. By transforming rotational speed 

constraints into equivalent stress limits, the approach proactively optimizes material 

distribution while considering multi-physics coupling. Key techniques include the 

coordinate transformation for stress analysis, adjoint-based sensitivity analysis, and 

advanced relaxation strategy of stress-based constraints. A numerical case of an 

annular structure validates the method: compared to unconstrained optimization, the 

proposed framework reduces the mean stress by 8.87% while maintaining structural 

compliance within a 30% volume fraction constraint. Optimized designs exhibit 

branching structures that effectively redistribute stress concentrations. This work 

bridges theoretical burst speed analysis with proactive topology optimization, offering 

a systematic solution to enhance cyclic-symmetric structures safety margins and 

material efficiency. 
 

Keywords: topology optimization, mean stress constraints, burst speed, cyclic-
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1  Introduction 
 

The cyclic-symmetric structures such as turbine disks are critical structural 

components in aerospace engines, subject to complex loading conditions including 

centrifugal forces from high-speed rotation, thermal stresses due to non-uniform 

temperature distributions, gas pressure, and assembly stresses at connection interfaces 

[1]. Analyzing their burst speed is fundamental for strength design, with international 

standards mandating a burst speed reserve coefficient exceeding 1.22 for turbine disks 

[2]. Given the catastrophic consequences of non-inclusive disk rupture [3, 4] and the 

weight constraints imposed by engine thrust-to-weight ratios, optimizing disk designs 

requires a delicate balance between burst speed analysis and lightweight objectives. 

Overly conservative predictions increase structural mass, while underpredictions risk 

premature failure. 
 

Originating from Robinson’s 1944 Mean Stress Method [5], the field has evolved 

through empirical and computational refinements. NASA’s material utilization 

coefficients [6] and GE’s notch strength calibration improved practical applicability, 

while modern studies like Xie et al. [7] introduced probabilistic models for burst speed 

prediction, accounting for material uncertainty and structural reliability. Kasljevic [8] 

correlated numerical simulations with experimental burst tests, bridging theoretical 

analysis and real-world validation. Computational advancements, such as Zhu et al.’s 

[9] failure assessment diagram for burst speed evaluation, have enhanced accuracy by 

integrating global stability criteria and finite element discretization. 
 

The conventional mean stress method for burst speed prediction faces inherent 

limitations as a reverse-engineering approach that requires iterative validation of pre-

existing configurations. This retrospective validation process inevitably prolongs 

development cycles and escalates costs, prompting the exploration of topology 

optimization (TO) as a proactive design strategy. TO fundamentally integrates 

structural performance constraints during conceptual design phases while offering 

substantial design freedom, particularly when combined with additive manufacturing 

advancements [10-12]. Defined as the systematic determination of optimal material 

distribution within specified design domains under predefined objectives and 

constraints, TO has evolved significantly since Bendsøe and Kikuchi's pioneering 

homogenization-based methodology [13]. Three principal branches have emerged: a) 

Density-based methods employing Solid Isotropic Material with Penalization (SIMP) 

[14-16] or Rational Approximation of Material Properties (RAMP) [17, 18]; b) 

Evolutionary Structural Optimization (ESO) [19, 20]; and c) Level-Set Methods 

(LSM) [21, 22]. 
 

Notwithstanding these advancements, significant challenges persist in optimizing 

designs under operational loads such as thermal gradients and centrifugal forces. The 

inherent coupling between structural configuration and load distribution necessitates 

concurrent consideration of both elements during optimization. Current research 

predominantly focuses on two areas: stiffness maximization [23-27] and stress-based 

optimization [28-30], with some studies combining both approaches [31-34]. 

However, a critical research gap remains unaddressed: the systematic treatment of 
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mean stress constraints specifically governing disk burst rotational speeds. This 

lacuna in current literature highlights the necessity for novel methodologies that can 

effectively reconcile structural topology optimization with burst speed-driven mean 

stress requirements. 
 

This study introduces a novel topology optimization framework of thermo-elastic 

cyclic-symmetric structures with mean circumferential/radial stress constraints 

derived from burst speed requirements. By transforming rotational speed constraints 

into equivalent stress limits, the method enables proactive design optimization, 

balancing structural compliance with safety margins. The proposed approach 

integrates coordinate transformation techniques, adjoint-based sensitivity analysis, 

and relaxtion strategy of stress-based constraints, providing a systematic solution for 

cyclic-symmetric structures design. 
 

2  Mean circumferential/radial stress constraint 
 

The mean stress method is defined as a failure criterion where circumferential or radial 

rupture occurs when the mean circumferential stress in the meridional cross-section 

or the mean radial stress at any radius reaches the corresponding ultimate strength of 

the material. Empirical formulas based on numerical solutions of the mean stress 

method have been developed in engineering for predicting burst speeds. When 

conducting stress analysis using the finite element method, simplified calculation 

methods for circumferential/radial stresses in disks can be employed [35]. In such 

cases, the formula for calculating disk burst speed in cylindrical coordinates is 

expressed as follows: 
 

 burst max

/

b

r


 


=  (1) 

 

where ωburst and ωmax represent the burst speed and allowable maximum speed of the 

disk respectively, such that the burst speed reserve coefficient η can be expressed as 

the ratio ωburst/ωmax. ζ denotes the material utilization coefficient of the disk. b

corresponds to the tensile strength of the material when separation or rupture occurs 

in the meridional or cylindrical cross-section of the turbine disk at the mean operating 

temperature. /r represents the mean circumferential stress or mean radial stress of 

the turbine disk. 
 

Based on the expression method for burst speed using the mean stress method, the 

constraint expression for the burst speed of the turbine disk can be formulated as 

follows: 
 

 

b
burst, max

b
burst, maxr r

r


 




  




  



= 

= 

 (2) 

 



 

4 

 

where ωθ and ωr denote the specified lower constraint limits for circumferential and 

radial burst speeds respectively. 
 

As derived from the preceding analysis, the burst speed constraint fundamentally 

constitutes a mean circumferential/radial stress constraint, yielding the transformed 

expression: 
 

 

2

burst, 2

b b

2

burst, 2

b b

r

r r

r



   




   




   



 
 = 

 

 
 = 

 

 (3) 

 

where ηθ and ηr respectively stand for the circumferential burst safety factor and the 

radial burst speed safety factor of the turbine disk. Every parameter on the right-hand 

side of the constraint inequality can be set through experimental methods or empirical 

data. As a result, the upper constraint limit of the mean circumferential stress or mean 

radial stress of the disk can be precisely calculated. This idea offers a systematic way 

to transform the rotational speed-related design constraints into equivalent stress-

based constraints. 
 

Here, the mean circumferential and radial stresses previously described are 

formulated within the cylindrical coordinate system. To facilitate sensitivity analysis 

and subsequent topology optimization algorithm development, a coordinate 

transformation method can be employed to approximate the stress matrix in 

cylindrical coordinates using the Cartesian stress matrix. In the Cartesian coordinate 

system, assuming fixed hexahedral element dimensions, the mean circumferential and 

radial stresses of the disk based on finite element method can be approximated by 

multiplying the differential area of the mean stress integration cross-section by a 

uniform thickness. The expressions are as follows: 
 

 

( )

( )

,

1sum

,

1sum

1

1

n

e e

e

n

r e r e

e

V
V

V
V

  

 

=

=

=

=





 (4) 

 

where σe,θ denotes the circumferential stress of element e, σe,r represents the radial 

stress of element e, Ve designates the volume of the e-th element, and Vsum denotes the 

total volume. 
 

In general, for the Cartesian and cylindrical coordinate systems sharing the same 

origin and z-axis, the transformation relationship between Cartesian coordinates (x, y, 

z) and cylindrical coordinates (r, θ, z) can be mathematically expressed as: 
 

 
cos

sin

x r

y r





=

=
 (5) 
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Moreover, based on the relationship between the cylindrical coordinate system and 

the Cartesian coordinate system, the directional transformation matrix β can be 

formed as: 
 

 

cos sin 0

sin cos 0

0 0 1

 

 

 
 

= −
 
  

β  (6) 

 

Let σCartesian and σcylindrical denote the stress tensor matrices in the Cartesian and 

cylindrical coordinate systems, respectively, which can be expressed as: 
 

 Cartesian cylindrical

x xy xz r r rz

yx y yz r z

zx zy z zr z z



  



     

     

     

   
   

= =   
     

σ σ  (7) 

 

From Equation (6), the element stress tensor matrix in the cylindrical coordinate 

system can be expressed by the stress matrix in the Cartesian coordinate system and 

the directional transformation matrix β as follows: 
 

 T

cylindrical Cartesian=σ β σ β  (8) 

 

Therefore, the detailed expressions of σe,θ and σe,r in Equation (4) can be further 

derived as: 
 

 

2 2

, , , ,

2 2

, , , ,

sin cos sin 2

sin cos sin 2

e e x e e y e e xy e

e r e x e e y e e xy e

      

      

= + −

= + +
 (9) 

 

Herein, θₑ represents the azimuthal angle of element e, which can be approximately 

calculated from the coordinates of the element centroid (Xₑ, Yₑ, Zₑ) using the arctangent 

function. 
 

Considering the element stress vector 
T

, , , , , ,, , , , ,e e x e y e z e xy e yz e xz      =  σ  in the 

finite element method, according to Equation (9), Equation (4) can be rewritten in the 

form of the sum of vector dot-products: 
 

 

( ) ( )

( ) ( )

,

1 1sum sum

,

1 1sum

,

um

,

s

1 1

1 1

e e

e r e

n n

e e e

e e
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r e r e e

e e

V V
V V

V V
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 

= =

= =

= =

= =

 

 

S σ

S σ

 (10) 

 

where the coordinate transformation vectors Se,θ and Se,r are explicitly defined through 

the following expressions: 
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2 2

,

2 2

,

sin cos 0 sin 2 0 0

cos sin 0 sin 2 0 0

e e e e

e r e e e

   

  

 = − 
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S

S
 (11) 

 

3  Topology optimization 
 

3.1  Optimization formulation 
 

Building upon the previously described research framework, this study develops a 

topological optimization formulation considering mean stress constraints for thermo-

elastic cyclic-symmetric structures. The optimization problem is formulated to 

minimize the global structural compliance, subject to constraints on mean 

circumferential stress, mean radial stress, and volume fraction ratio. The detailed 

mathematical expressions are explicitly formulated as follows: 
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L
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 (12) 

 

Herein, x denotes the design variable vector, where each component xi represents an 

independent design variable defined on the i-th designable element, and nd is the total 

number of designable elements in the structure. C signifies the global structural 

compliance, with U and K representing the global displacement matrix and global 

stiffness matrix, respectively. ix  denotes the filtered density obtained via the filtering 

function ( )i x , which will be detailed in subsequent sections.   and r  are the 

mean circumferential and radial stresses defined previously, for which appropriate 

upper constraint limits can be specified. Vi represents the volume of element i, V is 

the total volume of the structural design domain, and fV is the prescribed volume 

fraction upper limit. xmin is the specified lower bound of the design variable, set to xmin 

= 10-3 to prevent singularity of the stiffness matrix in finite element analysis. Fm, Fth, 

and Fct correspond to mechanical, thermal, and centrifugal loads, where the latter two 

are design-variable-dependent. Their expressions are given by: 
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 th th T

1 1

e e

e

N N

e e e e e
V

e e

T dV
= =

= =  F F B D Ι  (13) 

 

and 
 

 ct th 2

1 1

e eN N

e e e

e e


= =

= = F F M R  (14) 

 

where the subscript e denotes quantities associated with a finite element. The strain-

displacement matrix Be and elasticity matrix De characterize the element’s mechanical 

behavior, while αe represents the material’s linear thermal expansion coefficient, and 

ΔTe is the scalar temperature change within the element. Volumetric thermal 

expansion is modeled using the identity vector I = [1, 1, 1, 0, 0, 0]T for three-

dimensional problems. The consistent mass matrix Me, derived from the element’s 

mass distribution, couples with the radial position vector Re, which is constructed 

from nodal coordinates projected onto the radial plane perpendicular to the rotation 

axis. The angular velocity ω governs the magnitude and distribution of centrifugal 

forces. 
 

Moreover, the expression for the global stiffness matrix K is given by 
 

 T

1 1

e e

e

N N

e e e e
V

e e

dV
= =

= = K K B D B  (15) 

 

3.2  Numerical implementations 
 

3.2.1  Density filtering 
 

To mitigate checkerboard patterns and achieve well-defined optimized configurations, 

density filtering is indispensable [36]. This work adopts a weighted decaying density 

filtering technique [26]. By accounting for potential element volume variances, the 

filtered density ix  is calculated via 
 

 ( )
1

i

i

ij j j

j Sik k

k S

i i w V x
w V

x 




= = 


x  (16) 

 

with 
 

 
 min

min=

i j i

ij j i

S j r

w r

= − 

− −

r r

r r
 (17) 

 

where ‖∙‖ represents the Euclidean norm of a vector, and rj denotes the centroid 

coordinates of element j. The filter radius rmin is defined as the maximum distance 

between adjacent element centroids, determined based on geometric considerations to 

ensure numerical stability. 
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3.2.2  Material interpolation scheme 
 

The material interpolation scheme plays a pivotal role in establishing a direct 

relationship between the physical quantities of the problem and continuous design 

variables. This work employs the RAMP interpolation model to address design-

dependent loads, including thermal and centrifugal loads. Under this framework, the 

interpolation functions for the elastic matrix D and mass matrix M are mathematically 

formulated as follows: 
 

 
( )

( )

( )
( )

0

0

D

M

1 1

1 1

i
i

i

i
i

i

x

S x

x

S x

−
=

=

+

+ −

D D

M M

 (18) 

 

Here, the superscript (0) denotes the material properties in the fully solid state. ix  

represents the filtered density, which quantifies the presence ( ix  = 1) or absence ( ix  

= 0) of solid material in element i. The penalty coefficients SD and SM govern the 

interpolation of the elastic matrix and mass matrix, respectively. 
 

Additionally, the thermal expansion coefficient α is penalized using the SIMP 

interpolation model as follows: 
 

 
( )0p

i ix =  (19) 
 

where p represents the penalty factor of the SIMP interpolation model. 
 

3.2.3  Relaxation strategy of stress-based constraints 
 

In the structural topology optimization under stress-based constraints, the stress 

singularity phenomenon may sometimes occur. Essentially, this is because the stress 

becomes discontinuous when the design variables approach zero. To address this 

"stress singularity phenomenon", the ε-relaxation method can be employed [37]. For 

the stress calculation of elements with intermediate relative densities, to achieve the 

relaxation effect, another interpolation scheme similar to the SIMP material 

interpolation model can be defined as follows: 
 

 
( ) ( ) ( )tm
0 0 0ˆ pp

ek e ek e e ekx x T= − σ U D ID B  (20) 
 

Herein, the subscript ek denotes the k-th integration point of element e. For 

simplification, this study employs the element nodes as integration points. The terms 

ˆ
ekσ , Bek, and ΔTek represent the relaxed stress at the stress integration point, the strain-

displacement matrix, and the temperature change respectively. The vector Ue denotes 

the displacement vector of element e. The parameters pm and pt correspond to the 

relaxation factors for mechanical and thermal strains, respectively, which take values 

between zero and one. In this study, relaxation factors are set as pm = pt = 0.5, 

following the recommendation in Reference [38]. 
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Thus, under the relaxation strategy of stress-based constraints described above, the 

mean circumferential stress and mean radial stress  in optimization formulation (12) 

can be further expressed in relaxed form as 
 

 

( )

( )

1 1sum

1 1s

,

um

,

1 1

1

ˆ

ˆ
1

e

e

on

e

e k

e ek

e r

e

on

r e

e ke

ek

V
V o

V
V o





= =

= =

 
=  

 

 
=  

 

 

 

S σ

S σ

 (21) 

 

where oe represents the number of element integration points, which is simplified to 

the number of element nodes in this study. 
 

4  Sensitivity analysis 
 

To enable efficient gradient-based algorithm implementation for solving optimization 

problem (12), gradient information of all structural responses with respect to the 

design variable xi is required. In density filtering scenarios, sensitivity analysis of any 

structural response frsp - whether it be the objective function or a constraint function - 

with respect to xi is explicitly derived using the chain rule: 
 

 
( )

( )rsp rsp rsp1

i i

j

j

ji i i

j S j Si j i jk k k j

k S

f f x f
w V

x x x w V x 



   
= =

   
 


r

r
 (22) 

 

Evidently, during sensitivity calculations for each optimization response, the 

differentiation approach using the chain rule remains consistent. Consequently, the 

key differences in sensitivity analysis across various optimization responses primarily 

lie in the computation of rsp / if x  . 

 

4.1  Sensitivity analysis of the structural compliance 
 

Based on the objective function defined in Equation (12), the expression for the 

sensitivity of global structural compliance with respect to the filtered density is 
 

 T T1

2i i i

C

x x x

  
= +

  

U K
U K U U  (23) 

 

Applying the equilibrium equation KU = Fm + Fth + Fct, the derivative of both sides 

with respect to ix  is taken: 
 

 
m th ct

i i i i ix x x x x

    
+ = + +

    

K U F F F
U K  (24) 

 

Assuming the mechanical load vector Fm is independent of the design variables, 

the derivative / ix U  can be computed by 
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th ct

1

i i i ix x x x

−     
= + − 

    

U F F K
K U  (25) 

 

By substituting Equation (25) into Equation (23), we have the sensitivity of the 

global compliance written by 
 

 
th ct

T T1

2

i i i
i i i

i i i i

C

x x x x

   
= + − 

    

F F K
U U U  (26) 

 

Here, respectively, the partial derivatives 
th /i ix F , 

ct /i ix F , and /i ix K  can be 

explicitly expressed by Equations (13), (14), and (15) as 
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( )
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D 0 0T
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V
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i
i i

V
i i
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x S x

S

x S x

S
dV

x S x





+ + + −   = 
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 +
=
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 +
=

 + −  





F
B D Ι

F
M R

K
B D B

 (27) 

 

4.2  Sensitivity analysis of mean circumferential/radial stress 
 

Given that the construction forms of mean circumferential stress and mean stress are 

essentially identical, for brevity, subsequent sensitivity analysis will use the mean 

circumferential stress as an illustrative example. According to the Equation (21), the 

sensitivity calculation expression of mean circumferential stress   with respect to 

the filtered variable ix  is: 
 

 ,

1 1sum

ˆ1 1 e

ek
e

i

on

e

e ki e

V
x V o x






= =

 
 

 

 
=  

  
 

σ
S  (28) 

 

Assuming that the temperature difference remains constant within a single iteration, 

by the chain rule of differentiation and according to Equation (20), the partial 

derivative of the relaxed mean stress at the k-th integration point of element e with 

respect to the design variables can be expressed as: 
 

 
( ) ( )

tm

m
0 0ˆ pp

pek e e e
ek e e ek ek

i i i i

x x
x T

x x x x

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= + −  
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σ U
D B U B I  (29) 

 

Then, for computational convenience, let 
 

 1 2

i

A A
x

 = +


 (30) 
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with 
 

 

( ) ( )
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For A1, it can be further simplified to the following expression: 
 

 ( ) ( )( )tm 11

, m t

0 0

1

1sum

1 i

pp

i i ik i

o

i

ki

i ikA V
V o

p x p x T −

=

− −  =
  IS D B U  (32) 

 

A2 can be solved via the adjoint method. First, the element displacement vector Ue 

can be obtained from the global displacement matrix U through the index matrix Λe, 

i.e., Ue = ΛeU, yielding: 
 

 
th ct

1e
e e

i i i i ix x x x x
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U U F F K
Λ Λ K U  (33) 

 

By substituting Equation (33) into A2, we have 
 

 

( )

( )( )

m

m

0

2

1 1sum

0

1

th ct
1

,

1sum

th ct
1

,

1 1

1 1

e

e

p

e e ek e

i i i

p

e e ek e

i i

on

e

e ke

on

e

e ke i

A V
V o

V

x
x x x

x
x x xV o





=

−

−

=

= =

  
=  

 

    
+ −  

    

   
+

 

 
=  − 

  


  

 

 

F F K
S D B Λ K U

F F K
S D B Λ K U

 (34) 

 

Following the adjoint method, we formulate the adjoint vector λ as 
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Then, λ can be solved via the adjoint equation as 
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Therefore, the equation A2 can be simplified to 
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where the three partial derivative terms in the right-hand side are calculated via 

Equation (27). At this stage, the explicit computational expression for the mean 

circumferential stress sensitivity has been successfully derived. 
 

5  Numerical example 
 

In this section, a numerical example is presented to validate the effectiveness of the 

proposed topology optimization method incorporating mean circumferential stress 

constraint. A comparative study compares two configurations: one with mean stress 

constraints and one without, under identical boundary conditions, aiming to 

investigate whether this method effectively reduces mean circumferential stress and 

thereby enhances predicted burst speeds. The gradient-based Global Convergence 

Method of Moving Asymptotes (GCMMA) algorithm [39] is employed to solve the 

optimization problem, with convergence criteria defined as: (1) relative variation of 

the objective function remaining below 0.1% for five consecutive iterations, and (2) 

full satisfaction of all constraints. 
 

The annular computational model with 100 mm outer diameter, 50 mm inner 

diameter, and 1 mm uniform thickness features six equally spaced circumferential 

grooves along its outer periphery as shown in Figure 1. The annular structure sustains 

a 500 K  temperature rise, 7500 rpm rotational velocity, and 989.95 N concentrated 

mechanical loads at each groove-decomposed into radially outward and clockwise 

tangential components. Boundary conditions enforce fixed constraints along the 

innermost circumference while reserving single-layer non-design domains at 

inner/outer annular regions (excluding groove proximity zones) for manufacturing 

feasibility. Spatial discretization utilizes 37224 eight-node hexahedral elements 

(36012 in the design domain) with 75768 nodes, maintaining 1 mm average element 

size. To achieve cyclic symmetry in the structure, six azimuthally periodic constraints 

are imposed at the groove orientations, complemented by sectorial symmetry 

constraints within each 60° periodic segment. The solid structure material exhibits a 

density of 4450 kg/m3, Young's modulus of 110 GPa, and Poisson's ratio of 0.3, with 

thermal expansion characteristics defined by a coefficient of 9.0×10-6 K⁻¹.  
 

 
Figure 1: The annular structure with loads and boundary conditions 
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The initial optimization stage disregards mean circumferential stress constraints, 

defining the objective function as structural compliance minimization with a volume 

fraction constraint (upper limit fV = 0.3). While the mean circumferential stress 

response is monitored and recorded throughout the optimization process, it remains 

excluded from the iterative constraint system to establish a baseline reference for 

subsequent comparative analysis. The optimized structures during the optimization 

process is illustrated in Figure 2, demonstrating a gradual emergence of hierarchical 

branching structures with progressive iterations. 

 
 

  
(a) Interation 25 (b) Interation 50 

  
(c) Interation 100 (d) Interation 300 

Figure 2: The optimized structures without mean circumferential stress constraint 
 

 

The iterative response histories encompassing structural compliance, volume 

fraction, and monitored (unconstrained) mean circumferential stress are demonstrated 

in Figure 3. The optimization successfully converges with compliance asymptotically 

approaching 24.39 J and volume fraction consistently tracking the constraint upper 

bound of 0.3. Notably, the converged mean circumferential stress value of 433.88 

MPa serves as a critical reference datum for defining subsequent stress constraint 

thresholds, providing quantitative guidance for constrained optimization formulations. 
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Figure 3: Convergence history of the optimization 

without mean circumferential stress constraint 
 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Now, we integrate the mean circumferential stress as an optimization constraint 

into the workflow while maintaining global compliance minimization as the objective 

and retaining the 0.3 volume fraction constraint. Based on the previous unconstrained 

optimization's converged stress value of 433.88 MPa, the stress constraint upper 

bound is set to 400 MPa. Utilizing the unchanged finite element model, Figure 4 

demonstrates the evolving optimized structures during iterations. The constrained 

optimization generates markedly distinct geometries: while preserving the primary 

trunk-branch motif, additional "sub-trunk structures" emerge between adjacent main 

trunks, effectively redistributing stress concentrations to satisfy the 400 MPa mean 

stress threshold. This hierarchical reinforcement pattern demonstrates the constraint's 

efficacy in balancing global stiffness and localized stress mitigation. 
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(a) Interation 25 (b) Interation 50 

  
(c) Interation 100 (d) Interation 300 

Figure 4: The optimized structures with mean circumferential stress constraint 
 
 

 

 
 

 

 
 

 

 
 

 

 

Figure 5 presents the iterative response histories of all metrics during the 

optimization process, demonstrating successful convergence with structural 

compliance asymptotically approaching 23.30 J, volume fraction tracking closely to 

the 0.3 constraint limit, and mean circumferential stress converging to 395.40 MPa. 

Notably, the introduction of stress constraints achieves dual performance 

enhancement: structural stiffness remains uncompromised, while the mean 

circumferential stress exhibits an 8.87% reduction compared to the baseline 

configuration, indicating simultaneous improvements in both rigidity and fatigue 

resistance. 
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Figure 5: Convergence history of the optimization with 

mean circumferential stress constraint 
 
 

 

 

Figure 6 comparatively illustrates the evolution profiles of mean circumferential 

stress with/without constraint implementation during optimization. Both profiles 

exhibit rapid stress reduction during the initial 50 iterations. Beyond this threshold, 

the mean stress constraint mechanism activates, coinciding with topological 

configuration stabilization. From Iteration 50 onward, the constrained case maintains 

lower stress levels than its unconstrained counterpart, achieving steady-state 

convergence after Iteration 225. These results validate the efficacy of the proposed 

mean stress constrained optimization framework in effectively regulating stress 

distributions while maintaining structural integrity. 
 

 

 
 

 

 

Figure 6: Comparative evolution of mean circumferential stress 

with and without constraint 
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6  Conclusions and Contributions 
 

This study introduces a novel topology optimization framework for thermo-elastic 

cyclic-symmetric structures, integrating mean circumferential/radial stress constraints 

to enhance burst speed reserve coefficient and structural integrity. By transforming 

burst speed constraints into equivalent mean stress thresholds, the method balances 

stiffness maximization with stress regulation, achieving an 8.87% reduction in mean 

circumferential stress while maintaining structural compliance. Hierarchical 

branching patterns and sub-trunk structures emerged in optimized designs, 

demonstrating effective stress redistribution under multi-physics coupling. The 

framework combines coordinate transformation techniques, adjoint-based sensitivity 

analysis, and relaxation strategy of stress-based constraints, enabling efficient 

gradient-based optimization for practical industrial applications. 
 

Key contributions of this study feature threefold: (1) development of a novel mean-

stress constrained topology optimization framework for cyclic-symmetric structures, 

(2) comprehensive validation through an annular structure case study, and (3) 

establishment of quantitative guidelines for stress threshold determination and 

stiffness-strength balancing. Future research directions will focus on three extensions: 

implementation of dynamic load constraints, incorporation of probabilistic failure 

criteria, and experimental verification through additive manufacturing prototypes to 

reconcile numerical predictions with physical system behavior. 
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