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Abstract 
 

In this study, a novel framework that integrates multiscale modelling and 

metaheuristic optimization is developed to minimize warpage in ceramic substrates 

used in microelectronics packaging. Ceramic substrates are prone to warpage due to 

the complex interactions between the ceramic microstructure and the heterogeneous 

circuit layout. To predict warpage accurately, effective ceramic material properties 

are derived using Laguerre–Voronoi tessellation combined with finite element-based 

homogenization, which captures the biphasic nature of sintered ceramics. A 

composite CAD model is generated to incorporate the substrate’s hole features, and a 

volume-fraction-based homogenization method is applied to address the 

inhomogeneity between metallic and ceramic layers. To reduce computational effort, 

a surrogate model is trained on a multiscale warpage simulation dataset to predict the 

average vertical nodal displacement on the substrate’s central plane under thermal 

loading. The optimal combination of design parameters that minimizes warpage is 

determined using the Teaching–Learning-Based Optimization (TLBO) algorithm. 

Validation against fine-scale simulations confirms that the proposed framework 

effectively predicts substrate warpage and identifies feasible, optimal design solutions. 
 

Keywords: ceramic substrate, warpage, multiscale modelling, homogenization, 

surrogate model, finite element analysis, optimization. 
 

1  Introduction 
 

Ceramic substrate packaging is widely employed in the field of microelectronics 

packaging due to its exceptional thermal resistance and excellent electrical stability 
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[1]. However, manufacturing failures frequently occur due to warpage and the 

inherent mechanical durability limitations of ceramic materials. These challenges 

result in increased production costs and extended manufacturing periods. To address 

these issues, extensive research has been undertaken to elucidate and predict the 

relationships among factors such as substrate warpage, substrate thickness, process 

conditions, and via size [2,3]. Recent studies have increasingly focused on predicting 

warpage using surrogate models to optimize design parameters [4]. 
 

Accurate prediction of substrate warpage requires a precise estimation of the material 

properties constituting the substrate [5]. The properties of ceramics produced via the 

sintering process are predominantly determined by their microstructure; thus, Voronoi 

tessellation-based techniques have been proposed for effective modeling of 

polycrystalline ceramics [6,7,8]. These methods reliably capture the structural 

properties measured in experiments, thereby enhancing the accuracy of 

microstructural analyses. 
 

Moreover, ceramics produced through sintering exhibit a biphasic structure, with 

different properties at grain boundaries compared to within the grains. This biphasic 

nature necessitates a homogenization process when applying the material data to 

macro-scale analyses. Various homogenization methodologies have been developed 

for multiscale analysis, including constructing Representative Volume Elements 

(RVEs) and extracting equivalent material properties via Finite Element (FE) analysis 

[9]. An alternative approach involves generating RVEs using Laguerre-Voronoi 

tessellation followed by applying the Voigt and Reuss models to obtain equivalent 

properties [10]. 
 

Constructing warpage analysis models becomes computationally demanding when 

fully accounting for the substrate’s complex circuitry. Additionally, as the substrate 

is a multilayer structure composed of both insulating and metallic layers, it is critical 

to reflect the inhomogeneity of each layer. To overcome these challenges, composite 

micromechanics-based simplification methods have been proposed, enabling more 

efficient warpage analysis [11,12,13]. 
 

In this study, we introduce a comprehensive framework designed to facilitate the 

development of an optimal design and processing strategy for ceramic substrates. The 

framework integrates an equivalent material property modeling process that considers 

ceramic microstructure with a simplified warpage analysis model reflecting the 

substrate’s circuit layout. Finally, we construct a multiscale warpage dataset to 

support the surrogate-based metaheuristic optimization framework to minimize 

warpage. 
 

2  Methods 
 

2.1 Overview of proposed framework 
 

The proposed framework is designed to predict substrate warpage by simultaneously 

considering ceramic material properties based on ceramic microstructure and the 

heterogeneous distribution of metal and ceramic in the substrate macrostructure. 
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Based on this prediction, the framework seeks to determine the optimal parameter set 

that minimizes warpage. 
 

The framework comprises three main processes:  

1) multiscale warpage dataset generation,  

2) surrogate model training,  

3) metaheuristic optimization.  
 

A conceptual diagram of the framework is presented in Figure 1. 
 

 
 

Figure 1: Conceptual diagram of ceramic substrate design optimization framework 
 

First, ceramic material properties are estimated by generating the ceramic 

microstructure using Laguerre-Voronoi tessellation and applying the Voigt-Reuss 

assumptions to responses obtained from finite element analysis. Subsequently, a 

warpage analysis employing a simplification method is performed based on the 

estimated equivalent material properties and the substrate design parameters. The 

relationships between these factors and the warpage results are recorded in a 

multiscale warpage simulation dataset. This dataset is then used to train a surrogate 

model for rapidly predicting warpage outcomes. Various surrogate models are 

evaluated, and the most suitable one is selected through validation. The selected 

surrogate model is applied in a metaheuristic optimization process to obtain the 

optimal parameters that minimize warpage while accounting for multiscale effects. 
 

2.2 Multiscale warpage dataset  
 

2.2.1 Effective material properties generation 
 

The Laguerre-Voronoi tessellation-based modelling approach combined with an FE-

analysis-based homogenization technique is widely recognized as one of the most 

effective methods for capturing the characteristics of polycrystalline microstructures. 
 

In this study, a polycrystalline microstructure without predefined boundaries is first 

generated using Laguerre-Voronoi tessellation, after which individual grains and 
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grain boundaries are implemented through specific CAD operations applied to each 

grain.  
 

 
 

 

Figure 2: Workflow diagram of microstructure generation and corresponding FE 

model for homogenization 
 

 

After randomly placing N grains within the unit cell, a Laguerre-Voronoi tessellation 

based on power distance is applied to partition the space. In this process, the radii of 

the spheres within the nuclei are sampled from a normal distribution defined by the 

mean and variance given as microstructure parameters. The formulations are as 

follows: 

 
 

{(𝓧𝑝𝑖
, 𝑟𝑖)}  =  {(𝓧𝑝𝑖

, 𝑟𝑖): 𝓧𝑝𝑖
~ 𝑈(0, 1), 𝑟𝑖  ∼  𝒩(𝜇,  𝜎2)} ∀𝑖 ∈ {1,2, … , 𝑁}           (1) 

 

{𝑅𝑃𝑖
} = {𝑥 ∈ 𝑅𝟛: |𝓧𝑝𝑖

− 𝒙| − 𝑟𝑖
2 ≤ |𝓧𝑝𝑗

− 𝒙| − 𝑟𝑗
2}  ∀𝑗 ∈ {1,2, … , 𝑁},  𝑗 ≠ 𝑖        (2) 

 

 

To introduce boundary effects of the microstructure, geometric scaling-up and cut-off 

are applied between grain solids and their neighbours. 
 

For the structural properties of the microstructure, tensile and shear loading conditions 

are applied in three different orientations, yielding a total of six cases, and the 

equivalent elastic modulus is subsequently calculated using the Voigt and Reuss 

models. Additionally, under the same framework, thermal properties are determined 

by evaluating the volumetric changes induced by variations in body temperature 

across three orientations, which allows for the computation of the coefficient of 

thermal expansion. All analyses and evaluations were performed using the Ansys 

Mechanical. 
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2.2.2 Effective substrate modeling and warpage simulation 
 

A base CAD model incorporating the substrate's holes is generated by utilizing the 

substrate's macrostructural parameters. To perform a model simplification that 

accurately reflects the material property imbalance induced by the circuit layers and 

vias, a volume-fraction-based homogenization method is employed.  
 

First, the circuit layer is modelled as a metal distributed on a plane based on actual 

circuit modelling data, while the vias are modelled as holes filled with metal. 

Subsequently, the volume-fraction-based homogenization method is applied to the 

mesh generated from the base CAD model. By incorporating the previously 

determined equivalent ceramic properties and the specified properties of the metal 

paste, a simplified model with low computational cost is achieved. 
 

 
Figure 3: Material assigned model and visualized warpage simulation result. 

 

2.3 Surrogate model training 
 

Direct modification of the model, subsequent analyses, and evaluation of outcomes 

due to changes in the optimization design parameters incur a tremendous 

computational cost. Therefore, to accelerate the overall process of modelling, analysis, 

and result extraction, a surrogate model was developed using the multiscale warpage 

dataset generated in previous steps. This model is designed to predict the average 

vertical nodal displacement on the substrate’s central plane under thermal loading, 

based on the input parameters. To achieve the most accurate predictions, training was 

conducted using three different methods: Radial Basis Function, Multi-Layer 

Perceptron, and Gaussian Process Regression and their performance was evaluated 

via leave-one-out cross validation. The model demonstrating the best performance 

was then adopted. 
 

2.4 Metaheuristic optimization 
 

To determine the optimal combination of parameters that minimizes substrate 

warpage, an optimization problem was formulated. 
 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑚𝑖𝑛(𝑢𝑧̅̅ ̅), 𝑢𝑧̅̅ ̅ =
1

𝑁
∑ 𝑢𝑧,𝑖

𝑁
𝑖=1                   (3) 

 

The value of the objective function of a design set is computed using the surrogate 

outputs. 
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In this study, the Teaching-Learning-Based Optimization (TLBO) algorithm, a 

metaheuristic method, was utilized to explore new designs. It draws inspiration from 

the dynamics of teaching and learning processes observed in classroom settings [14]. 

As a population-based approach, TLBO iteratively refines a group of candidate 

solutions to reach the global optimum. Unlike other methods, TLBO's performance is 

influenced solely by the size of its search population. 
 

3  Results 
 

To validate the proposed framework, we evaluated the warpage accuracy of the 

equivalent substrate model as well as the maximum accuracy of each surrogate model. 
 

In verifying the warpage accuracy of the effective substrate model, the fine model 

reflecting the actual circuit geometry was regarded as the exact solution, and the error 

between the equivalent and fine models was determined. The detailed formulation of 

the Weighted Mean Absolute Percentage Error (WMAPE) and the error between the 

two models is provided as follows. 
 

WMAPE  =  
∑ | 𝑦𝑖 − 𝑦𝑖̂ |𝑛

𝑖=1  

∑ | 𝑦𝑖 |𝑛
𝑖=1  

  ×  100% 
       (4) 

 

 Case A Case B 

WMAPE 19.06% 14.88% 
 

Table 1: WMAPE between warpage of effective substrate model and fine model 
 

To assess the accuracy of each surrogate model, we trained the models using the 

Multiscale Warpage dataset generated from preset parameters and compared the 

resulting predictions. A train/test split was applied, and the model selected through 

leave-one-out cross validation on the training set was subsequently evaluated on the 

test set. 
 

MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑛

𝑖=1  ×  100%                                   

(5)

 

 

 RBF MLP GPR 

MAPE 8.41% 9.82% 9.41% 
 

Table 2: The test set Mean Absolute Percentage Error (MAPE) for the three 

surrogates 
 

4  Conclusions and Contributions 
 

In this study, both the micro-level parameters determining the ceramic properties from 

sintering and the macro-level parameters inducing substrate deformation during 

thermal processing were considered. Ultimately, a metaheuristic-based optimization 

framework was proposed to explore the optimal parameters at each level that can 

suppress substrate warpage. Each component of the framework was validated in terms 

of performance and feasibility, ensuring that the optimization results are practical. 
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Furthermore, by training various surrogate models and selecting the best-performing 

one, a model that accurately replicates the multiscale analysis results of the substrate 

was developed. Consequently, the combined surrogate model and metaheuristic 

optimization approach demonstrates that a fast and efficient exploration of optimal 

design parameters at the early stages of substrate design is achievable. 
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