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Abstract 

This paper proposed an optimization method which improves the uniformity of 

normal deformation of local regions in the boundary of structure. Firstly, the variance 

of normal displacements is proposed as the measurement of the uniformity of normal 

deformation on a surface under small deformation conditions. And a topology 

optimization method based on the density method improving uniformity of normal 

deformation on surfaces is proposed by introducing variance of normal displacements 

into topology optimization problems. The relative sensitivity is calculated via adjoint 

method. Afterwards, the proposed method has been verified on a numerical case. The 

result of the numerical case implied that by using the proposed optimization method 

the uniformity of normal deformation on a surface is quantitively measured properly 

and effectively improved with a slight influence on global stiffness and acceptable 

extra cost on convergence.  

Keywords: topology optimization, thermal protection structure, deformation control, 

nodal displacements, variance constraint, sensitivity analysis 

1  Introduction 

In decades, the optimization method has been developed as one of the most efficient 

approaches for lightweight structural design with multidisciplinary performance 

requirements. Recent progress and applications of topology optimization have been 

summarized in literature reviews[1-5], these achievements continue to improve the 

performance and practical applications of the topology optimization method. 
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Deformation control has been one of the key problems in topology optimization. A 

common and natural approach to control deformation is by controlling nodal 

displacements directly, Yang[6] established a multi-objective topology optimization 

model with stress and displacement constraints based on the ICM method. Single-

point or multi-point displacement constrains were also introduced in the design-space 

adjusted optimization proposed by Rong[7] and NURBS-based SIMP method 

optimization proposed by Rodriguez[8]. In engineering practice, Maute[9] introduced 

a wing-tip displacement optimization constrain which effectively suppresses wing 

deformation in wing structure topology optimization. Since displacement constraints 

of large-scale points may lead to complexities in the iteration process, researchers 

have provided some approaches accordingly. Qiao[10] proposed an optimization 

method minimizing geometric average displacement, compared to compliance 

minimizing optimization, this method is more effective in minimizing displacement. 

Zuo[11] achieved a global constraint on displacement based on the BESO 

optimization method. The above deformation control methods are natural 

measurements for deformations but have difficulties in isolating rigid mode from 

displacement and thus are not able to measure deformation properly in some cases.  

Another approach controls local deformation by controlling compliance, a 

commonly used measurement for structural stiffness in topology optimizations. It has 

been introduced as an optimization objective by Bendsøe[12], Nha Chu and Xie[13] 

with the ESO method, and Wang[14] with the level-set method. Similar quantities are 

introduced as measurements for local deformations, Zhu[15] introduced local strain 

energy as a measurement and optimization constraint for regional warping 

deformation in topology optimization, and Li[16] expanded this method by proposing 

AWE strain energy as a measurement for deformation of openings on structures, 

afterward, this method was developed into dynamic[17-19],  nonlinear[20, 21], and 

electromagnetic[22, 23] fields. This kind of method is advantageous in efficiency in 

excluding rigid mode from total displacement and constructing optimization problems, 

but as an overall measurement of warping deformation strain energy lacks flexibility 

in controlling different patterns of deformation. 

Therefore, this paper proposes a method aiming at enhancing the uniformity of 

normal deformation. In section 2, the variance of normal displacement (VND) is 

introduced as the measurement of the uniformity of normal deformation of a local 

region in the boundary of a structure. VND-controlled optimizations are formulated 

and sensitivity analysis for VND is conducted afterwards. In section 3, numerical 

examples including illustrative examples and engineer examples for validation of the 

proposed optimization method. Finally, concluding remarks are made in section 4. 

2  Methods 

In this section, a measurement for uniformity of normal deformation on local regions 

in boundary of the structure based on the variance of normal displacement is proposed 

and introduced into topology optimizations, sensitivity analysis of VND is conducted 

via adjoint method afterwards so that the VND controlled optimization method is 

completely formulated. 
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2.1  Measurement for uniformity of normal deformation 

This work is motivated by engineering practices, the uniformity of normal 

deformation sometimes plays a significant row in the performance of structure. For 

example, the thermal protection structure in Figure 1 for aerospace vehicles consists 

of panels fixed on the frames which are tolerant to uniformed normal deformation but 

vulnerable to inconsistent normal deformation. 

 
Figure 1: Typical TPS Structure on Aerospace Vehicles 

 

Therefore, a topology optimization method aiming at enhancing the uniformity of 

normal deformation is proposed in this paper. To get a more illustrative view, the 

optimization problem is presented in Figure 2. is a structural boundary on the 

global structure   is assigned as the surface region where the uniformity of normal 

deformation needs suppression. 
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Figure 2: Structure for Optimization Problem 

 

 

Let x be a point on the surface of  , the normal component of x is written as 
( )n

ux , 

and displacements of all nodes on the surface   is written as ( )n
u  . Since normal 

deformation of   is determined by ( )n
u , the variance of ( )n

u  (VND) noted as ( )( )n
D u

, 

is defined as the quantitative measurement for uniformity of normal deformation on 
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the surface  . in a continuous structure, ( )( )n
D u

 is written as: 

                             (1) 

where A is the area of  . In discrete FEM structure, ( )( )n
D u

 is written as 

                                       (2) 

where nu
 is the average of the normal component of displacements of points on  : 

                                                (3) 

By the definition above, the uniformity of normal deformation of   is measured 

by the VND of all nodes on   , shown in Figure 3 (a). For convenience in the 

optimization problem definition and efficiency in sensitivity analysis, another shrink 

method that measures the uniformity of normal deformation of  by the VND of key 

points on    , which is shown in Figure 3 (b), is proposed. In this paper, the 

distribution of key points on  is even and the density of key points is determined by 

the nature of specific optimization problems. 

 

Figure 3: control methods for uniformity of normal deformation 

 

2.2  Formulation of VND Controlled Optimization 

Classic topology optimization problem to find a configuration with minimum global 

compliance constrained by material volume is given by equation (4) where x is the 

vector composed of design variables ix  which is the pseudo-density of the 

corresponding element in the design domain, a lower bound minx is assigned in purpose 
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of avoiding singularity of the stiffness matrix. Global compliance is retrieved by

/ 2C = T
U KU  where K is a function of x  while U  is fetched by finite elements 

equation ,=f KU   V is the volume of material in the design domain, it is also a 

function of x and is constrained by the maximum volume max .V
 

                        (4) 

In this paper, two formulas of VND-constrained optimization are established, one 

is by adding an extra constraint on the upper bound of VND: 

                                                  (5) 

to classic optimization which is given by equation (4) and the VND-constrained 

optimization given by equation (6): 

                             (6) 

Another optimization is formulated by introducing the VND as the optimization 

objective and an additional upper bound on global compliance as an extra constraint 

which is given by equation (7): 

                            (7) 

herein, maxC  is the upper bound of global compliance. 

For material interpolation, the SIMP model is used in this paper where penalization 

of Young’s modulus for elements in the design domain is given by equation (8) 
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                                                     (8) 

where E0 is Young’s modulus of the original material and p is the penalty factor which 

is prescribed at 3 in this work and the density penalization of material is given by 

equation (9) 

                                                     (9) 

where 0  is the density of the original material. 

 

2.3  Sensitivity analysis  

Sensitivities of gradient-based topology optimizers are derivatives of the optimization 

objective and constraints with respect of the design variables. As the sensitivity 

analysis for basic optimization problems including (4) is well-developed in numerous 

references (e.g. Bendsøe 1989; Sigmund 2001), the sole focus of sensitivity analysis 

here naturally turns to retrieving the derivative of 
( )n

( )D u  to the design variable x  

and sensitivity analysis for global compliance C and volume V  is skipped. 

In this section 
( )n

( )D u  is be transformed into matrix form for the convenience of 

sensitivity analysis. Let D  be a m-ordered symmetric matrix given by equation (10) 

                                     (10) 

let d be a vector given by equation (11) 

                                    (11) 

where 
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             (12) 

where 
( )n

x   is furtherly expressed by global displacement .u   Firstly, the normal 

component of displacement is calculated as below. As is shown in Figure 2, at point 
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k , 
k

u  is the displacement vector, 
( )n

k
e  is the normal unit vector, and ( )n

xu  is normal 

displacement. By projecting 
k

u on 
( )n

k
e ,  ( )n

xu  is given by equation (13)  

                                                (13) 

multiplied by 
( )n T

e
k

 on both sides of the equation, (13) is transformed into 

                                               (14) 

In discrete structure  , ,
k

u the translational displacement of the node k  is written 

as: 

                                                   (15) 

herein 
k

S is a 3 6n extraction matrix whose element jks is: 

                (16) 

Taking (15) into (14),  
( )n

k

u


 is given by equation (17) 

                                         (17) 

and 
( )n

S  is therefore given by equation (18) 

                                            (18) 

and 
( )n

x  is written by the global displacement u   multiplied by a constant matrix, 

written as: 

                               (19) 

and ，(12) is written as. 

                   (20) 

The sensitivity of
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                            (21) 

the differentiation of the finite element equilibrium =f Ku by jx , / jx u is noted as 

                                     (22) 

Substituting / jx u in (21), ( ) /n

jD x u  is furtherly derived as 

               (23) 

To avoid the complicated process of calculating 
1−

K , the adjoint method is applied in 

this paper. Introducing  

                                 (24) 

where   artificial adjoint vector and q  is artificial load, the adjoint vector is then 

computed by an extra finite element equilibrium 

                                                     (25) 

and the sensitivity of ( )( )n
D u

 to ix ,
( )n

( ) / iD u x  is therefore given by equation (26) 

                                     (26) 

where / jx f and / jx K  is calculated through predefined analytical expression or 

prescribed numerical data. 

3  Numerical results 

In this section, A 2D MBB beam example is investigated to validate if the proposed 

VND parameter is effective as a measurement for uniformity of normal deformation 

and the effectiveness of the proposed VND controlled optimizations. See Figure 4 the 

structure is 500mm×100mm in size and discretized into 4-node square plane elements 

with the size of 1mm 1mm . The top edge of the design domain with a gap of 5mm 

to the left end is prescribed VND-controlled region, the left edge of the structure is 

fixed, and a concentrated force of 50N is applied at the midpoint on the right edge. 

For material, the elastic modulus is 210GPa, and the Poisson’s ratio is 0.33. 

A classic topology optimization problem, which is given by equation (4), is first 

applied as the baseline for the proposed VND-controlled optimization. The objective 

of the optimization problem is minimizing global compliance with an upper bound on 

volume of 30%. The optimization problem converged after 42 iterations, the VND of 
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the optimized design is 72.602 10− mm2 and the global compliance is 25.247 10− mJ. 

Based on the classic optimization, VND-constrained optimization introduced an 

extra constraint on the upper bound of VND of 
8 21.301 10 mm−  (5% of classic design) 

with objective and other constraints unchanged. This optimization converged after 52 

iteration steps with VND decreased to 
8 21.144 10 mm−  and the global compliance 

consequently increased to 
25.571 10−   mJ (106.18% of the classic design) which 

implied that the global stiffness deteriorated in exchange for enhancement of normal 

deformation uniformity of the top edge. 

 

Figure 4: MBB Beam 

VND-minimized optimization assigned VND of the top edge as the optimization 

objective, and an extra constraint on global compliance of 25.571 10−  mJ 

(Compliance of the VND constraint design) is introduced with a constraint on the 

upper bound of the volume of 30%. This optimization converged feasibly with VND 

decreased to 
87.853 10−  mJ after 300 steps. 

 

(a) Classic Design 

 

(b) VND Constrained Design 

 

(c) VND Minimized Design 

Figure 5: Scaled Deformation Pattern 
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The scaled deformation figure is shown in Figure 5. It is obvious that both VND-

constrained design and VND-minimized design have effectively enhanced the 

uniformity of normal deformation on the prescribed region and the uniformity of 

normal deformation improves as VND in optimized design declines, which implies 

that VND of a prescribed region functioned well as the measurement of uniformity of 

normal deformation. 

The optimized design's material layouts are shown in Figure 6, 2 of the proposed 

VND-controlled optimizations has changed the transmission path in both locally and 

globally compare to the classic optimization, and have converged on clear 

transmission paths which are preferable for engineering practice.  

 

(a) Classic Optimization 

 

(b) VND-Minimized Optimization 

 

(c) VND-Minimized Optimization 

Figure 6: Material Layouts 

This numerical case demonstrated that the VND functioned well as the 

measurement of uniformity, and the proposed VND-controlled optimizations are 

capable of improving the uniformity of prescribed regions for given case.  

 

4  Conclusions  

This paper has proposed a VND controlled optimization method aiming at enhancing 

normal deformation uniformity on structural surfaces or edges. By introducing 

variance of normal displacements of nodes on local region of structural boundary, the 

uniformity of normal deformation under small displacement conditions is quantitively 

measured and constrained or minimized in corresponding optimizations.  

Numerical tests and comparisons with classic topology optimizations demonstrated 

that the uniformity of normal deformation on the surface or edge has been improved 
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successfully with acceptable sacrifice of global stiffness in both illustrative example 

and engineering case. 

Acknowledgements 

This paper is supported by Defense Industrial Technology Development Program 

JCKY2022205B020. 

References 

[1] T.P. Ribeiro, L.F.A. Bernardo, J.M.A. Andrade, "Topology Optimisation in 

Structural Steel Design for Additive Manufacturing", Applied Sciences, 11(5), 

2021, 10.3390/app11052112 

[2] J. Zhu, H. Zhou, C. Wang, et al., "A review of topology optimization for additive 

manufacturing: Status and challenges", Chinese Journal of Aeronautics, 2020, 

10.1016/j.cja.2020.09.020 

[3] J. Zhu, W. Zhang, L. Xia, "Topology Optimization in Aircraft and Aerospace 

Structures Design", Archives of Computational Methods in Engineering, 23(4), 

595-622, 2015, 10.1007/s11831-015-9151-2 

[4] G.I.N. Rozvany, "Aims, scope, methods, history and unified terminology of 

computer-aided topology optimization in structural mechanics", Structural and 

Multidisciplinary Optimization, 21(2), 90-108, 2014, 10.1007/s001580050174 

[5] O. Sigmund, K. Maute, "Topology optimization approaches", Structural and 

Multidisciplinary Optimization, 48(6), 1031-1055, 2013, 10.1007/s00158-013-

0978-6 

[6] D. Yang, Y. Sui, Z. Liu, et al., "Topology optimization design of continuum 

structures under stress and displacement constraints", Applied Mathematics and 

Mechanics, 21(1), 19-26, 2000, 10.1007/bf02458535 

[7] J.H. Rong, J.H. Yi, "A structural topological optimization method for multi-

displacement constraints and any initial topology configuration", Acta 

Mechanica Sinica, 26(5), 735-744, 2010, 10.1007/s10409-010-0369-9 

[8] T. Rodriguez, M. Montemurro, P. Le Texier, et al., "Structural Displacement 

Requirement in a Topology Optimization Algorithm Based on Isogeometric 

Entities", Journal of Optimization Theory and Applications, 184(1), 250-276, 

2019, 10.1007/s10957-019-01622-8 

[9] K. Maute, M. Allen, "Conceptual design of aeroelastic structures by topology 

optimization", Structural and Multidisciplinary Optimization, 27(1-2), 27-42, 

2004, 10.1007/s00158-003-0362-z 

[10] H. Qiao, S. Liu, "Topology optimization by minimizing the geometric average 

displacement", Engineering Optimization, 45(1), 1-18, 2013, 

10.1080/0305215x.2012.654789 

[11] Z.H. Zuo, Y.M. Xie, X. Huang, "Evolutionary Topology Optimization of 

Structures with Multiple Displacement and Frequency Constraints", Advances 

in Structural Engineering, 15(2), 359-372, 2012, 10.1260/1369-4332.15.2.359 

[12] M.P. Bendsøe, "Optimal shape design as a material distribution problem", 

Structural Optimization, 1(4), 193-202, 1989, 10.1007/bf01650949 



12 

 

[13] D. Nha Chu, Y.M. Xie, A. Hira, et al., "On various aspects of evolutionary 

structural optimization for problems with stiffness constraints", Finite Elements 

in Analysis and Design, 24(4), 197-212, 1997, 10.1016/s0168-874x(96)00049-

2 

[14] M.Y. Wang, X. Wang, D. Guo, "A level set method for structural topology 

optimization", Computer Methods in Applied Mechanics and Engineering, 

192(1-2), 227-246, 2003, 10.1016/s0045-7825(02)00559-5 

[15] J. Zhu, Y. Li, W. Zhang, et al., "Shape preserving design with structural topology 

optimization", Structural and Multidisciplinary Optimization, 53(4), 893-906, 

2015, 10.1007/s00158-015-1364-3 

[16] Y. Li, J.H. Zhu, W.H. Zhang, et al., "Structural topology optimization for 

directional deformation behavior design with the orthotropic artificial weak 

element method", Structural and Multidisciplinary Optimization, 57(3), 1251-

1266, 2017, 10.1007/s00158-017-1808-z 

[17] Y. Wang, J. Zhu, Y. Li, et al., "Shape preserving design with topology 

optimization for structures under harmonic resonance responses", Structural and 

Multidisciplinary Optimization, 65(5), 2022, 10.1007/s00158-022-03218-9 

[18] O.M. Silva, F. Valentini, E.L. Cardoso, "Shape and position preserving design 

of vibrating structures by controlling local energies through topology 

optimization", Journal of Sound and Vibration, 515(2021, 

10.1016/j.jsv.2021.116478 

[19] M.S. Castro, O.M. Silva, A. Lenzi, et al., "Shape preserving design of vibrating 

structures using topology optimization", Structural and Multidisciplinary 

Optimization, 58(3), 1109-1119, 2018, 10.1007/s00158-018-1955-x 

[20] J. Zhu, Y. Li, F. Wang, et al., "Shape preserving design of thermo-elastic 

structures considering geometrical nonlinearity", Structural and 

Multidisciplinary Optimization, 61(5), 1787-1804, 2020, 10.1007/s00158-020-

02532-4 

[21] Y. Li, J. Zhu, F. Wang, et al., "Shape preserving design of geometrically 

nonlinear structures using topology optimization", Structural and 

Multidisciplinary Optimization, 59(4), 1033-1051, 2019, 10.1007/s00158-018-

2186-x 

[22] F. Chen, J. Zhu, W. Zhang, "Radar cross section minimization for step structures 

using topology optimization", Structural and Multidisciplinary Optimization, 

65(2), 2022, 10.1007/s00158-021-03110-y 

[23] F. Chen, J. Zhu, X. Du, et al., "Shape preserving topology optimization for 

structural radar cross section control", Chinese Journal of Aeronautics, 35(6), 

198-210, 2022, 10.1016/j.cja.2021.10.014 

 




