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Abstract

This paper presents a novel numerical model based on the lattice discrete particle
model to simulate the behaviour of 3D-printed alloy structures. The overall research
focuses on improving implants’ mechanical performance and biocompatibility, specif-
ically addressing issues like stress shielding, bone mass loss, and implant loosening.
By modelling materials at the particle scale, the lattice discrete particle model effec-
tively captures the mesostructure of 3D-printed metals. The contribution develops two
plasticity models to account for the material properties of titanium alloys. The effects
of inherent porosity due to 3D printing are incorporated into the model, revealing
significant performance impacts, particularly for structures close to the printing limit.
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1 Introduction

3D printing technology can be successfully used in joint and dental implants. The
current implants are predominantly made of Ti6Al4V alloy, which suffers from a rel-
atively high modulus of elasticity and possible release of toxic substances into the
organism. Therefore, other alloys are being sought. This contribution concerns with
beta-titanium alloys which are characterized by titanium’s lightweight nature with
excellent durability, strength, thermal stability, biocompatibility, and corrosion re-
sistance. One such alloy is Ti25Nb4Ta8Sn, where niobium (Nb) and tantalum (Ta)
stabilize the titanium in its beta structure [1] (body-centered cubic lattice—BCC/K8).

One order of magnitude lower stiffness of titanium specimens obtained from nu-
merical simulations than experimental measurements is described in paper [2]. Such
discrepancy is assigned to the flaws arising in the small scale specimens during the
3D printing. Therefore, numerical models based on the continuum theory were re-
placed by a numerical model based on the lattice discrete particle model (LDPM) [3],
which was originally developed for simulation of concrete. LDPM can generally sim-
ulate the material of interest at the particle scale to consider their size and distribution.
The material behaviour is defined at the facets between the adjacent particles. The
influence of printing precision is studied too.

On each facet, the normal and two tangential strains are determined. Moreover,
the volumetric and deviatoric strains are computed. With the help of volumetric and
deviatoric moduli, the corresponding stresses are easily obtained. With respect to the
experimental results, numerical model has to be based on elasto-plastic theory which
is combined with the damage mechanics. Equivalent strains are computed on facets
and simple yield condition with hardening is used. The damage is assumed to be
isotropic and the linear softening law is used.

Lattice discrete particle models usually do not provide the stiffness matrix, which
naturally leads to applying an explicit time integration method. The explicit methods
are conditionally stable [4], and the length of the time step is relatively very small. In
connection with the lattice models used to analyse 3D printed specimens, hundreds
of thousands of degrees of freedom are needed. The large number of degrees of free-
dom and very short time steps lead to difficulties. The finite difference method, which
is used, was therefore optimized. Laboratory experiments based on dogbone speci-
mens as well as numerical simulations reveal significant dependency of the specimen
performance on imperfections caused by 3D printing and on the sample thickness.
The smaller thickness, the larger variation of the response. The numerical simulations
without the damage theory lead to large error.

2 Lattice Discrete Particle Model

When considering the behaviour of quasi-brittle materials, including rocks [5] and
concrete [3], [6], the lattice discrete particle model is typically employed, provided



that the internal structure is taken into consideration. The material is discretised as a
collection of rigid entities, or cells, interacting across the defined facets that separate
them. These facets, which are presumed to be between the neighbouring cells, may
serve as surfaces for cracks. First, spherical particles are placed into the studied vol-
ume. With the use of a Delaunay tetrahedralization of the particle centres and nodes
used to describe the exterior surface of the volume, the lattice system that represents
the mesostructure topology is established. Next, the 3D tessellation is used to design
the polyhedral cell system. Keep in mind that there are numerous options available
for the tessellation, as discussed, for instance, in [3] and [7]. The aggregate and the
matrix phase that envelops the particles are combined to create cells. In contrast to
the first LDPM formulation, the current paper requires the 3D-printed metals’ particle
size distribution to be specified. Figure 1 shows two examples of 3D-printed alloys
with different porosity.
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Figure 1: Printed alloys with different porosities.

The integrated defects and numerical model are displayed in Figure 2. The model
definition is based on stress and strain vectors defined on the facets. The rigid body ki-
netics is employed to describe the displacement vector, u, associated with the facets [3]

u(x) =u; +0; < (x — ;) , (D)
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Figure 2: LDPM model of dog bone specimen: (a) full model; (b) part of the model
with flaws (voids) in the cross-section.

where v, and 6, are the translational and rotational degrees of freedom of node ¢ with
coordinate vector x,. For the given displacements and rotations of the associated par-
ticles, the relative displacement at the centroid of facet k£ can be determined as

Uck = Ugj — Ucy, (2)

where uc; and u; are the displacements at the facet centroid caused by the transla-
tions and rotations of the adjacent nodes 7 and j, respectively.

LDPM has proven its applicability for modelling of various materials, i.e., rocks [5]
and concrete [3], as well as many engineering problems such as adhesive anchors,
prestressed concrete beams, and fibre-reinforced polymer-concrete joints. Figure 2
displays the integrated defects and numerical model. The model definition is based
on stress and strain vectors defined on the facets. The rigid body kinetics is employed
to describe the displacement vector associated with the facets [3]. However, the orig-
inal formulation is not able to recover the full Poisson ratio range (—1 < v < 0.5)
and is limited to v < 0.25. Therefore, the volumetric-deviatoric split introduced in
the microplane models [8] is considered. The volumetric-deviatoric split allows the
recovery of the full Poisson ratio range needed for alloys and other materials. Be-
cause of the underlying tetrahedral mesh and corresponding facets (2. (see [3]) the
volumetric (hydrostatic) strain is calculated as [9]

1
EVE 300 n; JEN 3)

where (). ¢ is the initial volume of the tetrahedral element, F. is the set of facets be-
longing to one element, and I',,, and [;; are the facet area and distance of the adjacent
nodes corresponding to the facet, respectively. €y, stands for the normal strain com-
ponent on the facet m. The normal deviatoric strain for facet £ is written as

ENDk = ENk — EVk- 4)



Moreover, the shear (tangential) strain in the plane of the facet is written as e, =
(2, +2,.)"/2, where £, and 7, are the shear components in the local coordinate
system. The deviatoric strain is defined as epj, = (€3, + €%, )'/%. The corresponding
stress components then read

ov = Eveny, onp = Epenp, om = Epen, o= Epeyr, (5)

where By = E/(1—v) and Ep = E/(1 + v) are the volumetric and deviatoric
moduli, respectively, related to Young’s modulus £. The constitutive material law de-
fined on the facets is described in the following section. By imposing the equilibrium
through the principle of virtual work, the internal work and nodal forces associated
with the facet can be calculated [3]. Note that subscript £ is omitted in the following
text for readability.

3 LDPM for Elastoplasticity

This section introduces a lattice discrete particle model for plasticity. The model is
based on the volumetric-deviatoric split, and the approaches outlined in [10]. This
equivalent stress-based material model is implemented in MARS software' and SIFEL
software? and is also combined with isotropic damage. The model is defined by means
of equivalent stress, 09, and strain, €®9. The equivalent strain has the form

g8 = \/(a/ +aenp) a2, +62) = \/(5%‘)2 + ae?, (6)

where 5?3 = ey + aenp, « stands for the interaction coefficient. This definition of
equivalent normal strain originates from the assumption that oy = Eyey. Based on
the principle of virtual power, we relate the stress components to the equivalent stress

as
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By substituting Equations (7) and (8) into (6), the effective stress is obtained in terms
of normal and shear stresses

2
o
T /
o = 012\,—1—0{, or =y/o3, + 0. 9)

If the elastic behaviour is assumed and taking into account Equations (7) and (8), the
stresses are written as

oy — Eeq€v, OND — OéEeq€ND, oM — OéEeanM, o = OéEeq€L, (10)

Thttps://www.es3inc.com/mars-solver/
Zhttps://mech.fsv.cvut.cz/~sifel/



where £ = ¢%9/c*9 = Ey and thus « = Ep/Ey = 1 — 2v/1 4 v. This formulation
covers the whole physical range of the Poisson ratio.

In this model, the yield condition is written as

f (o) = (6%)? = [oy ()] =0, (11)

where £ is the hardening variable, which is related to the plastic multiplier A through
the relation £ = A and yield strength

Oy (/i) :O'yo—i‘Hli, (12)

where oy is the initial yield stress and H is the hardening modulus. When this con-
dition is satisfied, yielding occurs. The radial return is performed on the equivalent
stress if f (g) > 0.

If the elastoplastic model is combined with the isotropic damage, the final stresses
are evaluated as

oy =(1—-w)on, oy=1—-woy, or=(1—wor, (13)

where w is the damage parameter. The linear softening law is assumed and defined in

the form
KR — Rg

w =

; (14)
Rf — Ko
where ky = l;/l;;, I is fracture opening, and k stands for the damage threshold
(onset of damage).

4 Preliminary Results

This section summarizes the preliminary findings of the above-described numerical
model based on the equivalent stress and volume of pores equal to 15% assumed. The
material model parameters used to simulate the uniaxial loading of dogbone speci-
mens are summarised in Table 1. The results obtained for the model with and without
damage are presented in Figure 3(a). As can be seen from the presented results, the
inserted pores reduced the yield strength of the specimen compared to the raw mate-
rial. Moreover, the material model with damage is capable of capturing the specimen’s
failure and crack evolution, see Figure 3(b).

E[GPa] v[] oyo[MPa] H [GPa] #gl[-] I [mm]
120 03 750 44 0001 02

Table 1: Material properties used in current study for titanium alloy
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Figure 3: Uniaxial tension of dog bone specimen: (a) load-displacement diagram -
model without damage (solid line); model with damage (dashed line); (b)
crack evolution in laboratory specimen.

5 Conclusion

The paper introduces a novel lattice discrete particle model for 3D-printed titanium
alloys. By removing cells from the computational model, the intrinsic porosity caused
by the printing procedure is taken into account. It’s important to note that the imper-
fections caused by the printing procedure significantly influence the specimen perfor-
mance, particularly for smaller thicknesses near the printing limits. This research is
significant as it presents a numerical model for a deeper understanding of the factors
that affect the performance of 3D-printed titanium alloys.
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