
A Data-Driven Methodology for Damage
Detection in a Short-Span Filler-Beam

Railway Bridge

A. Silva1, A. Meixedo1, P. A. Montenegro1 and
D. Ribeiro1,2

1 CONSTRUCT-iRAIL, Faculty of Engineering, University of
Porto, Portugal

2 iBuilt, ISEP, Polytechnic of Porto, Portugal

Abstract

Ensuring the structural integrity of railway bridges is a vital concern in infrastructure
management, particularly for short-span filler-beam bridges that are prone to degrada-
tion under repetitive loading. This work proposes a hybrid data-driven methodology
to detect early-stage damage in such structures, using the Cascalheira bridge in Por-
tugal as a case study. The approach integrates signal processing techniques (Contin-
uous Wavelet Transform and Principal Component Analysis), deep learning (Sparse
Autoencoders), and statistical tools (Mahalanobis distance and outlier analysis) to ex-
tract and refine damage-sensitive features from simulated acceleration responses. A
comprehensive numerical model that accounts for train-bridge dynamic interactions
and realistic track irregularities supports the simulation framework. Results demon-
strate that the proposed method achieves reliable damage identification with a low
false positive rate, even under significant environmental and operational noise. This
robust and scalable strategy offers a promising advancement for indirect Structural
Health Monitoring systems in railway infrastructure.
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1 Introduction

A critical component of modern infrastructure management is to ensure the structural
integrity of railway bridges. Among the various tasks in Structural Health Monitoring
(SHM), early damage detection remains one of the most challenging and essential
to prevent catastrophic failures and extend the service life of these bridges. This is
particularly relevant for short-span filler-beam railway bridges, which are susceptible
to degradation mechanisms due to their structural characteristics and frequent loading
cycles.

Traditional SHM approaches, typically grounded in model-based methods, often
rely on finite element calibration and modal parameter updating. However, these tech-
niques are sensitive to uncertainties in modelling assumptions and material properties,
and they are computationally intensive. Consequently, data-driven strategies, partic-
ularly those that use Machine Learning (ML) and Deep Learning (DL) algorithms,
have emerged as promising alternatives. These methods can process large volumes of
structural data and offer scalable and automated tools for damage identification.

Damage detection methods span a wide range of strategies. For example, Autore-
gressive (AR) modelling uses time-series analysis of strain or acceleration signals to
identify changes associated with structural degradation [1]. Dynamic response analy-
sis has been used to analyse traffic-induced dynamic responses using statistical tech-
niques [2]. Vibration-based techniques that employ Convolutional Neural Networks
(CNNs) have successfully distinguished damage patterns linked to cross-section losses
due to corrosion [3]. Genetic algorithms have optimised residual minimisation be-
tween measured and estimated responses, enabling effective detection in complex
structures [4]. Recent advances promote indirect, on-board detection through bogie
acceleration measurements, enabling efficient localisation under variable operational
conditions [5].

Despite these innovations, several challenges persist. One major issue is the mask-
ing of damage-sensitive features by operational and environmental variations, such as
different train speeds, temperature changes, or track irregularities. These influences
can introduce significant noise into raw sensor data, which obscures the subtle signa-
tures of an early-stage damage. Moreover, the lack of labelled damage data in real-
world contexts makes it necessary to use unsupervised or semi-supervised methods to
distinguish structural anomalies without explicit examples of real events.
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2 Damage detection methodology

Damage detection in railway bridges presents a significant challenge due to opera-
tional and environmental variability. To address this, a hybrid methodology combin-
ing signal processing, statistical analysis, and deep learning was developed to enhance
the sensitivity and robustness of damage detection. This methodology is expanded
through four sequential stages: feature extraction, feature updating, data fusion, and
feature discrimination, as shown in Figure 1.
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Figure 1: Methodology for damage detection used in this work.

2.1 Feature extraction

Extracting meaningful damage-sensitive features from acceleration signals is funda-
mental in unsupervised damage detection systems. In this work, the combination of
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the Continuous Wavelet Transform (CWT) and Principal Component Analysis (PCA)
was employed to perform time-frequency decomposition and dimensionality reduc-
tion, respectively.

CWT is advantageous for analysing non-stationary signals because it can localise
frequency content over time. The wavelet coefficients define it

Wψf (a, b) =
1√
a

+∞∫
−∞

f (t)ψ∗
(
t− b

a

)
dt, for a > 0 (1)

where ψ (t) is the mother wavelet, a the scale (inverse of frequency), and b the trans-
lation parameter. Morse wavelets in this application enable high adaptability due to
their tunable symmetry and bandwidth characteristics, optimising the sensitivity to
structural vibrations.

The resulting wavelet coefficients were post-processed using Principal Component
Analysis (PCA), which transforms the high-dimensional feature space into a lower-
dimensional set of uncorrelated principal components

Y = X · T (2)

whereX is the matrix of wavelet coefficients, T is the transformation matrix, and Y
the reduced feature space. The first components retain most of the variance and the
most relevant damage-related information. Statistical descriptors such as Root Mean
Square (RMS), standard deviation, skewness, and kurtosis were then extracted from
these components to represent the behaviour of each sensor compactly.

2.2 Feature updating

A Sparse Autoencoder (SAE) was trained on the PCA-compressed signals to refine
the damage-sensitive characteristics of the features further. This deep learning model
transforms the input data through a bottleneck layer, learning a sparse and nonlinear
representation that amplifies anomalies while reducing the sensitivity to environmental
noise.

The encoding-decoding process minimises the reconstruction loss Lrec (Θ)

Lrec (Θ) =
1

n

n∑
i=1

∥xi − x̂i∥2 (3)

where x is the input data, x̂ is the reconstructed data, and n is the total number of data
points. To enforce sparsity and regularisation, the total loss function becomes

Ltotal = Lrec + βLsparse + αLreg (4)

where Lsparse is the Kullback-Leibler divergence and Lreg the L2 regularisation term.
The resulting encoded representations are highly compact and informative, which en-
hances the capacity of the classifier to differentiate subtle damage signatures.
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2.3 Data fusion

After generating damage-sensitive features from multiple sensors, it is essential to
consolidate this multivariate data into a single damage index. The Mahalanobis dis-
tance, MDi, which accounts for correlations among variables, was employed to mea-
sure the deviation of the observed features from a reference healthy state

MDi = (xi − x̄) · S−1
x · (xi − x̄)T (5)

where xi is the feature vector of the current condition, x̄ the mean of the healthy fea-
tures, and Sx their covariance matrix. This metric provides a scalar damage indicator
per simulation, which enables direct comparison across conditions. The Mahalanobis
distance was computed and aggregated for each simulation and sensor to form a com-
prehensive diagnostic index.

2.4 Feature discrimination

An outlier detection method was implemented using a statistical confidence boundary
(CB) to distinguish between healthy and potentially damaged states automatically.
This boundary was defined via the Inverse Cumulative Distribution Function (ICDF)
of the Gaussian distribution

CB = invF (1− α) (6)

where α is set to 0.005, corresponding to a 99.5% confidence level. Any Mahalanobis
distance exceeding this boundary was considered indicative of structural damage.

3 Damage detection in the Cascalheira bridge

This work focuses exclusively on the damage detection task applied to the Cascalheira
bridge, a short-span filler-beam railway bridge in Portugal. Through the implementa-
tion of a robust model that accounts for train-bridge dynamic interaction and advanced
data-driven techniques, this work aims to identify early signs of damage, despite the
variability induced by operational and environmental conditions.

3.1 Bridge and train model

The Cascalheira bridge (Figure 2a) is located on the Northern Line of Portuguese Rail-
ways and supports trains travelling up to 160 km/h. It comprises two half-decks, each
equipped with nine HEB500 steel beams embedded in a reinforced concrete slab (Fig-
ure 2c). A detailed 3D finite element model was developed using ANSYS software,
which incorporates the composite deck, ballast, transition zones, and various material
nonlinearities (Figure 2b). Shell, beam, solid, mass, spring, and rigid link elements
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were employed to represent each structural component with high fidelity. More details
about the material properties of the model, its calibration and modal configurations can
be found in [6].

The Alfa Pendular train (Figure 3a), with six vehicles and 24 axles, was modelled
using a finite element approach. The vehicle model captured the dynamic effects
through primary and secondary suspension systems and was validated against empiri-
cal data. Spring-dashpot elements replicated the directional stiffness and damping of
the suspension system. A 3D numerical representation of one of the Alfa Pendular
vehicles is shown in Figure 3b. More detailed information about the parameters of the
Alfa Pendular vehicle can be found in [6].

(a)

Ballast
Ballast: transversal joint
Ballast: longitudinal joint
Composite deck
Sleepers

(b)

9 × HEB500
4.0751.38 4.075 1.38

10.96

0.05
9 × HEB500

0.
38

0.
17

[m]

(c)

Figure 2: Cascalheira bridge [6]: (a) global view; (b) numerical model; (c) cross-
section (dimensions in meters).

3.2 Baseline and damage simulation scenarios

To support the detection phase, a finite element model of the bridge was calibrated and
validated. A grid of 14 vertical accelerometers, placed along both the upper and lower
sides of the deck, was defined to capture the dynamic response with spatial resolution
suitable for modal sensitivity analysis (Figure 4).

A total of 96 time-history simulations were performed to represent baseline (un-
damaged) conditions (Figure 5). These simulations encompassed variations in train
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Figure 3: Alfa Pendular train [6]: (a) loading scheme (loads in kN); (b) numerical
model.
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Figure 4: Numerical setup of the Cascalheira bridge.

speeds, train loading configurations, and realistic track irregularities, obtained from
inspection data between 2018 and 2019. Three loading schemes and four irregulari-
ties profiles were combined to reflect operational diversity (Table 1). The simulations
included the train-bridge dynamic interaction using the Vehicle Structure Interaction
(VSI) tool developed by [7].

Scenario Information

Loading scheme 1
Train with maximum passenger capacity and full tank
levels

Loading scheme 2 Train with half passenger capacity and full tank levels
Loading scheme 3 Train without passengers and half tank levels
Irregularity 1 Simulation without irregularities profile
Irregularity 2 Irregularities profile measured on February 8th, 2018
Irregularity 3 Irregularities profile measured on September 2nd, 2019
Irregularity 4 Irregularities profile measured on October 6th, 2020

Table 1: Loading schemes and irregularities considered in the baseline scenarios.
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Figure 5: Combination of the 96 baseline simulations.

Damage scenarios were carefully selected to reflect plausible degradation mecha-
nisms in filler-beam railway bridges, which include elastometric support deterioration
and concrete cracking. Damage simulations were divided into two main categories
(D1 and D2), with parameter variations informed by field observations and literature
(Figure 6 and Table 2) [8]. For each category, multiple severity levels were applied.
In total, 90 damage simulations were conducted, incorporating combinations of train
speed, train loading conditions, and two irregularities profiles.

Alfa
Pendular

train
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Loading scheme 1

Loading scheme 3

Loading scheme 2

Irregularity 2

Irregularity 4

D1S1

D1S2

D2S1

D2S2

D2S3

Figure 6: Combination of the 90 damage simulations.

To further enhance the fidelity of the simulation data, site-measured noise from
the bridge without railway traffic was superimposed on the acceleration responses.
This ensured a more realistic simulation of the signals captured by the accelerometers
during actual monitoring campaigns.

3.3 Case study results

This section presents the application and performance evaluation of the damage de-
tection methodology, structured in four sequential steps: feature extraction, feature
updating, data fusion, and feature discrimination. The method was applied to the
finite element model of the Cascalheira bridge subjected to realistic train-bridge dy-
namic interaction simulations, which includes operational and environmental variabil-
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Damage Parameter Initial
value

Variation
(%)

Final
value Representation

Damage 1
Degradation

of the
supports

kv
(MN/m) 194.90

-21.70 152.60 D1S1

-37.83 121.20 D1S2

Damage 2
Cracking of

deck
concrete

Ec
(GPa) 36.39

-5 34.57 D2S1

-10 32.75 D2S2

-20 29.11 D2S3

Table 2: Details of all damage scenarios and their respective parameter variations.

ity through loading schemes, track irregularities, and train speeds.

Feature extraction
In the first stage, a hybrid signal processing approach which combines the CWT and
PCA was employed to extract damage-sensitive features from vertical acceleration re-
sponses collected at 14 strategically placed sensors (Figure 4). Each time-series signal
comprises 5813 data points and was decomposed into 96 wavelet coefficients using the
Morlet wavelet, which was selected for its superior time-frequency localisation. The
resulting 5813× 96 matrix per sensor was compressed into a 4× 96 feature matrix by
calculating four statistical descriptors: RMS, standard deviation, skewness, and kurto-
sis. This resulted in 384 features per simulation per sensor, which captured dominant
spectral and statistical characteristics of the structural response.

The effectiveness of the feature extraction process was validated by analysing the
evolution of selected parameters across 186 structural scenarios (96 baseline and 90
damaged). Figure 7 presents three specific indices (155, 231, 308) from the total fea-
tures, for one sensor (sensor 4 in Figure 4). The feature amplitudes showed sensitivity
to train speed and track irregularities. However, the separation between damaged and
undamaged conditions was not always distinct, emphasising the need for further re-
finement through nonlinear transformation.
Feature updating
The 384 extracted features were passed through an SAE to enhance damage detectabil-
ity. This deep learning model was trained using 80% of undamaged simulations and a
single sensor to determine optimal hyperparameters. The final configuration utilised a
single hidden layer with 372 neurons, a sparsity proportion of 0.01, and regularisation
parameters fine-tuned to promote generalisation. The bottleneck layer of the trained
SAE generated a 372-dimensional feature vector for each simulation and sensor.

The autoencoder normalised the output features into the [0, 1] interval, which sim-
plifies the comparison and reduces the influence of outliers (Figure 8). The SAE thus
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Figure 7: Amplitudes of three of the 384 CWT/PCA parameters, considering all the
186 structural conditions for the sensor 4.

acted as a nonlinear filter, removing redundant information and enhancing damage-
sensitive representations of the structural state.
Data fusion
A multivariate data fusion strategy was implemented by computing the Mahalanobis
distance between each simulation and the baseline reference. This computation was
performed at the sensor level first, reducing the 372-dimensional SAE output into a
single distance-based damage indicator (DI). A second fusion step integrated these
indicators across the 14 sensors, which produced a unified DI vector for all simula-
tions.
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Figure 8: Amplitudes of three of the 372 SAE parameters, considering all the 186
structural conditions for the sensor 4.

This hierarchical data fusion successfully differentiated between healthy and dam-
aged conditions, with damaged scenarios consistently showing higherDI values (Fig-
ure 9). The approach proved robust to operational variability, which captured struc-
tural anomalies even when signal variations due to speed or track irregularities were
present.
Feature discrimination
A CB was established using the Gaussian ICDF at a significance level of 0.5% to
automate damage detection (Figure 10). Any simulation with a DI that exceeds the
CB was classified as damaged. Applying this threshold to the 186 simulations resulted
in a clear binary separation between baseline and damage cases, with only 4.17% Type
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Figure 9: DI values obtained from SAE-based features, considering all the 186 struc-
tural conditions for all the 14 sensors.

I errors (false positives).
This outlier detection approach, grounded in statistical novelty detection, demon-

strated strong performance under environmental and operational noise. It effectively
leveraged the robustness of the Mahalanobis distance and the expressiveness of the
SAE-generated features to detect early-stage damage scenarios.

4 Concluding remarks

This work presents a robust hybrid methodology for unsupervised damage detection
in short-span railway bridges, validated through a detailed case study of the Cascal-
heira bridge. By combining advanced signal processing, deep learning, and statis-
tical decision-making, the proposed approach effectively overcomes the challenges
posed by operational and environmental variability. The integration of CWT, PCA,
and SAEs enables the extraction and enhancement of damage-sensitive features from
sensor data. The subsequent use of Mahalanobis distance and a confidence-based out-
lier analysis facilitates reliable differentiation between healthy and damaged states,
with only 4.17% false positives reported. These results underscore the potential of
the methodology for early damage detection in real-world monitoring systems, con-
tributing to safer and more efficient infrastructure management. Future research may
extend this framework to experimental datasets and explore its application to other
bridge typologies or structural systems.
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significance level of 0.5%, considering all the 186 structural conditions for
all the 14 sensors.
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