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Abstract

Like all structures, it is impossible to characterize a bridge in a definitive manner. The
intrinsic variability of materials, actions and building processes introduces mechani-
cal and geometrical uncertainties. The study of structural safety, assessed through the
relation between actions and bearing capacity, is as challenging as the variability of
those parameters. One of the limits the Eurocodes impose on high-speed ballasted
track railway bridges is verifying vertical deck acceleration. However, the apparently
arbitrary origin of the normative limit has been discussed in recent years. To study
this problem, it is necessary to address situations where the probabilities of failure are
lower than 10e-4, which comes at a significant computational cost, especially consid-
ering multiple load models and possible critical speeds. A new algorithm is proposed
based on subset simulation to find those speeds. An optimization study of the algo-
rithm’s parameters is presented. This process to determine critical speeds reduces the
computational expense by three orders of magnitude that a more traditional Monte
Carlo simulation would entail.
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1 Introduction

High-speed railway bridges are prone to experience dynamic effects due to the repeti-
tive nature of trains’ axle loads. Ultimately, these actions can compromise materials’
fatigue capacity, jeopardize track stability, or even be a cause of derailment. To contain
such effects, the EN 1990 [1] provides limits to the allowable vertical deck accelera-
tion. For ballasted track bridges, this limit is 3.5 m/s2, a value that originates in studies
by the European Rail Research Institute [2] that found ballast instability for accelera-
tions of 7 m/s2. Other authors note the seemingly arbitrary adoption of a safety factor
of 2 [3].

Revising this normative limit is a key research topic highlighted by the European
Union Agency for Railways [4]. Since the suitability of different limits should be
based on newly proposed safety factors, a probabilistic assessment problem is con-
stituted. However, considering that the acceptable probabilities of failure are usually
in the 10−4 range, typical Monte Carlo simulation can become unfeasible regarding
computational expense. To circumvent this limitation, the algorithm proposed in this
communication uses subset simulation and a set of search cycle instructions to reduce
significantly the necessary sample sizes.

2 Methods

2.1 Definitions

The present work concerns the study of vertical deck acceleration a. The failure event
being considered is the surpassing of the strict physical value aRl of 7.0 m/s2. Using
definitions from the Joint Committee for Structural Safety [5], the target probability of
failure is set at 10−4, which is in accordance with values found in the literature [6, 7].
The probability of failure pf is defined as:

pf = P (a ≥ aRl) (1)

A critical speed is defined, for a given load model, as the lowest speed that results
in:

pf ≥ 10−4 (2)

The High-Speed Load Model (HSLM-A), which is given in the EN 1991-2 [8] as a
set of 10 configurations of axle loads and spacings, is used for loading. Critical speeds
vcrit,i can be calculated for each of the 10 HSLM-A for a given bridge. The critical
speed vcrit is therefore obtained with:

vcrit = min
(
{vcrit,i}10i=1

)
(3)

2



2.2 Subset simulation application basics

Subset simulation [9] uses conditional probability to estimate pf as:

pf = P (Fi)
m−1∏
i=1

P (Fi+1|Fi) (4)

where Fi are m number of intermediate events (or levels) such that F1 ⊃ F2 ⊃ . . . Fm.
For the first level, P (F1) is estimated with a crude Monte Carlo simulation, provided
a reasonable N . The resulting acceleration values are ordered from highest (belonging
to F1) to lowest (farthest from F1), as illustrated in Fig. 1a. Given a selected arbitrary
intermediate probability p0, the (p0 ×N)-th value is classified as the cut-off y∗. The
states of the random variables corresponding to values greater than or equal to y∗ are
used as generators (x) to generate the sample of the next level (x̃), using the Modified
Metropolis Algorithm (MMA) [10]. This ensures that the states of the variables of
the resulting sample are inside F1. In the example in Fig. 1b, it is visible that every
result in i = 2 is greater or equal to the cut-off that defines F1. The process is repeated
(Fig. 1c and Fig. 1d) until y∗ is found inside Fm (i.e., P (Fi) > p0). With p0 = 0.1,
probabilities of the order of magnitude of 10−4 = 0.1× 0.1× 0.1× 0.1 are attainable
with four levels (Fm = F4). Note that in Fig. 1d, with p0 = 10 and N = 100, y∗
is in the 10th ordered position. Since in that example there are 13 results equal or
greater than y∗, P (F4) = 13/100 = 0.13 > p0, and as such, pf = 0.13

∏4−1
i=1 0.1 =

1.3× 10−4.

generators for the 
following level

F1

F3

generators for the 
following level

F1

F2

F3

F4

F1

F2

P(F4) > p0

generators for the 
following level

F1

F2

(a)

(c) (d)

(b)

Figure 1: Visualization of subset simulation. (a) i = 1; (b) i = 2; (c) i = 3; (d) i = 4.
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The diagram in Fig. 2 illustrates how subset simulation is applied in practice for
this study. Initially, the random variables are sampled using MATLAB® [11] and
combined with existing constant quantities to create the input for the FE model, which
is designed in ANSYS® [12]. The dynamic response is calculated for the desired
load model (i.e. one of the 10 HSLM-A configurations) using the Single Load Linear
Superposition method [13]. It is then filtered with a low-pass Type II Chebyshev filter,
cut off at 60 Hz, and the maximum absolute acceleration is stored for each randomly
generated bridge. After this crude Monte Carlo phase, if no stopping criterion is met,
the level counter is increased, and the ordered results greater or equal to y∗ are used
as the seeds for the Markov Chain Monte Carlo (MCMC). The MMA implementation
is based on the work by Uribe [14]. In this work, the adopted proposal Probability
Density Functions to obtain candidates η from the current state of a variable xk are,
for Gaussian distributed variables N (µ, σ2):

η ∼ N
(
xk, σ

2
)

(5)

and for uniformly distributed variables U (a, b):

η ∼ N

(
xk,

(b− a)2

12

)
(6)
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Figure 2: Application of subset simulation.

With the samples of the next level, new FE models are obtained, and the dynamic
responses for the new set are calculated. The process stops after the P (Fi) > 0.1
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condition occurs (after which pf can be estimated) or if i = 4 (i.e., if the subset
simulation is already in the fourth level, any possible pf would be lower than 10−4,
and therefore not worthy of further exploration for this work). If i ≤ 4, pf is given by:

pf = (p0)
i−1 × P (Fi) (7)

2.3 Proposed algorithm

Although the application of subset simulation is associated with considerable savings
in computation time, this only applies to the estimation of probabilities for a given
running speed. The question remains for which speed or set of speeds the probabilities
must be calculated. Simulating coarse intervals of 10 km/h is incompatible with the
sensitivity of most dynamic calculations concerning speed. Conversely, a finer 1 km/h
interval is not feasible given all the possible values in a usual speed interval.

Hence, the algorithm summarized in Fig. 3 is introduced. The objective of this
procedure is to avoid wasting computational resources that would be misused by cal-
culating probabilities of failure lower than 10−5. When the search cycle is initialized,
the running speed v is set to its initial value (the lowest in the given speed range).
After the initial analysis (i.e. the crude Monte Carlo simulation in i = 1), if the cut-off
y∗ is lower than a chosen threshold value yt, the speed is increased to the next value.
Note that yt must be chosen appropriately so that exceeding it represents a substantial
likelihood that pf is near 10−4. Initially, the speed increment is a coarse interval of
20 km/h. The cycle continues until the y∗ > yt condition is satisfied. If the resulting
pf is greater than 10−4, a finer speed cycle of 1 km/h increments is triggered, sym-
bolized by the flag F . The running speed returns to the value immediately after the
second-highest calculated speed (v = v − 19 km/h), and the cycle continues. Dur-
ing this phase, if y∗ < yt, flag D is activated to store the information that at least
one running speed was discarded during the finer cycle. The first time a pf > 10−4 is
found, the current v is classified as a suitable candidate. If D is off, no previous speed
was discarded in F1 (i.e., the speed or speeds immediately before were calculated but
turned out to be in the magnitude of 10−5 or lower), and the candidate is immediately
accepted as vcrit. Otherwise, a v = v− 1 reverse search cycle is activated to check the
previously discarded speed value until vcrit is confirmed.

2.4 Parameters for optimization

For the proposed algorithm to be viable regarding computational savings, the N , p0,
and yt parameters must be set appropriately. Unoptimized parameters may lead to
inefficient use of simulation capacity due to unnecessary time spent calculating vcrit
candidates that result in pf ≈ 0 due to an increased amount of entries in the v = v− 1
reverse search cycle or due to insufficient dispersion in i = 1 results that jeopardizes
further levels. Hence, a sensitivity study is performed to set appropriate parameters.
The metrics adopted are the time required to go from v=140 km/h to vcrit and the total
sample size nS required for the simulation.
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Figure 3: Algorithm to assess critical speed.
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3 Results

3.1 Case study bridge

The example structure employed in this work is a single simply supported 12 m span
of the Canelas bridge [6, 15], located in the Northern Line of the Portuguese Rail
Network. Its deck has a cross-section of 4.5 × 0.7 m2, embedded with HEB500 steel
profiles. The ballasted track carries UIC60 rails, and neoprene bearings support the
deck. The finite elements model is presented schematically in Fig. 4, where the
constituting random variables are taken from [16].

deck

rails

supportsballast

pads

Gnρc, Ec, tslab, bslab, As, ξ             ρb, Eb, hb, α

kp

Gaussian UniformUniform

Uniform

track shear stiffness
kt

Uniform

moving loads sleepers
mS

Uniform

Figure 4: Schematic representation of the finite element model and random variables.

3.2 Complete run example

An example of a complete algorithm run is depicted in Fig. 5 (in the graphics, the
offset in the coloured dots is meant to improve clarity and does not denote a change
in speed). In this case, the sample size N for each level is 100 and p0 = 0.1, which
means that in the sorted results, y∗ is in the 100× 0.1 = 10-th position. In simulations
1 to 7, y∗ was lower than yt (3 m/s2 in this case), meaning no simulation progressed
beyond i = 1. In simulation 8, y∗ is greater than yt, causing the simulation to continue,
resulting in a calculated pf of 0.02. This result at 280 km/h initiates the finer speed
increment cycle at 280-19=261 km/h. Simulations 9, 10 and 11 (261 km/h, 262 km/h,
and 263 km/h, respectively) do not meet the yt criterion. Simulation 12, at 264 km/h
meets the criterion and returns pf = 5.1 × 10−4, making it a suitable vcrit candidate.
However, since there was at least one discarded speed, the algorithm runs simulation
13 at 263 km/h by fetching the stored i = 1 results and resuming the subset simulation.
The resulting pf is 1.2× 10−4, making this speed the new vcrit candidate. Simulation
14, at 262 km/h is also resumed, resulting in pf = 4×10−5, confirming that 263 km/h
as vcrit and finishing the algorithm run. It is worth noting that this application of
the algorithm, with its iterative nature, allowed a critical speed to be found with a
total sample size of 2,200 (100 per level, with a maximum of 400 per speed value).
In contrast, running a similar procedure using crude Monte Carlo simulations would
require a total sample size of over 1 million.
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Figure 5: Example results from the application of the proposed algorithm. (a) Sim-
ulations 1 to 8; (b) simulations 9 to 12 (finer speed increment cycle); (c)
simulations 13 and 14 (v = v − 1 reverse search cycle).

3.3 Optimization results

The HSLM-A3 train is used to perform the optimization study of the critical speed
algorithm. The first parameter to be studied was the threshold value yt in i = 1,
which controls whether a speed value is discarded. For this part of the study, the
sample size and the intermediate probability were fixed at N = 100 and p0 = 0.1,
and yt varied between 2.0 m/s2, 2.5 m/s2, 3.0 m/s2 and 3.5 m/s2. Table 1 lists the
time and total sample size needed to complete the algorithm and the resulting vcrit.
It can be seen that using the values of 3.0 m/s2 and 3.5 m/s2 resulted in the least
computational expense. However, further analysis of the simulation results revealed
that the stricter 3.5 m/s2 limit caused the algorithm to skip v = 264 km/h, which
would have produced a suitable pf and therefore a lower (and valid) vcrit candidate.
Conversely, while it is true that using lower threshold values prevents prematurely
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discarding of candidate speeds, this option also leads to increased time expenditure,
as additional time is spent calculating candidates that are far from the final one. The
threshold value yt = 3.0 m/s2 is henceforth kept as optimal.

yt 2.0 m/s2 2.5 m/s2 3.0 m/s2 3.5 m/s2

time (h) 3:34 2:58 1:48 1:37

nS 4200 3400 2200 2100

vcrit (km/h) 266 264 263 267

Table 1: Variation of the first level threshold yt (HSLM-A3, p0 = 0.1, N = 100).

The parametric analyses’ results can be further illustrated by comparing the com-
plementary Cumulative Distribution Function (CDF) of a simulation corresponding to
a critical speed to the complementary CDF of its equivalent Monte Carlo simulation
with N = 100000 (per [17]), as shown in Fig. 6. In the figures, the circles highlight
the acceleration value (i.e., that simulation’s y∗ values) at the intermediate level, while
the asterisk indicates the final calculated pf . It can be seen that there is a close corre-
spondence for the scenarios with yt=2.5 m/s2 and yt=3.0 m/s2, where not only is the
calculated pf in the same vicinity (of 10−4), but the intermediate levels also follow the
trend of the corresponding Monte Carlo simulation.

Using the aforementioned yt value and a fixed sample size N = 100, the optimal
intermediate probability is examined by varying p0 between 0.05, 0.1 and 0.2. As
shown in Table 2, adopting an intermediate probability of 0.1 allowed the algorithm
to converge in the shortest time and with the smallest total sample size. The effect
of using p0 = 0.2 was similar to that of having a high yt, i.e., given the intermediate
probability, the cut-off on the ordered results list is lower. This makes it harder for y∗

to achieve yt, which makes for a longer v = v − 1 reverse search cycle. As for the
lower value, 0.05, the resulting additional computing time would only be justifiable if
the target pf was lower than 10−4. Concerning the complementary CDF comparisons
in Fig. 7, it is noticed that the simulation with p0=0.2 corresponds to a larger deviation
when compared to the Monte Carlo assessments. Conversely, the same trends are
closer for p0=0.2, albeit at a higher computational cost.

p0 0.05 0.1 0.2

time (h) 2:49 1:48 2:37

nS 2700 2200 3700

vcrit (km/h) 264 263 265

Table 2: Variation of the intermediate probability p0 (HSLM-A3, yt = 3.0 m/s2, N =
100).
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(a)
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Figure 6: Complementary CDF of the subset simulations (HSLM-A3, p0 = 0.1, N =
100) and corresponding Monte Carlo simulations with N = 100000. (c)
yt=3.0 m/s2, vcrit=263 km/h; (d) yt=3.5 m/s2, vcrit=267 km/h.

Regarding the sample size, the comparison of N between 50, 100, 150 and 200 is
calculated with fixed yt = 3.0 and pf = 0.1. As expected, Table 3 reveals that it takes
more time to compute larger sample sizes, while the smallest size, 50, corresponds to
the least amount of time and smallest total sample size. However, with an intermedi-
ate probability of 0.1, each level of a subset simulation with N = 50 provides only
5 elements to generate the samples of the following level. As a result, the number of
failed candidate states in the MMA increases, introducing inefficacy when scaling the
method by artificially limiting the dispersion of the results. Observing the comple-
mentary CDFs in Fig. 8, it is worth noting that there is an increased unevenness for
N = 50, even if the resulting critical speed is the same as for N = 100. The larger
sample sizes of N = 150 and N = 200 lead to similar results while consuming more
computation time.

Given that the various applications lead to vcrit in close proximity, the final adopted
values are yt = 3.0m/s2, p0 = 0.1, and N = 100. Running the optimized algorithm
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(a) (b)

(c)

Figure 7: Complementary CDF of the subset simulations (HSLM-A3, yt = 3.0
m/s2, N = 100) and corresponding Monte Carlo simulations with N =
100000. (a) p0=0.05, vcrit=264 km/h; (b) p0=0.1, vcrit=263 km/h; (c) p0=0.2,
vcrit=265 km/h.

N 50 100 150 200

time (h) 1:01 1:48 3:26 2:52

nS 1050 2200 6200 4000

vcrit (km/h) 263 263 267 265

Table 3: Variation of the sample size N (HSLM-A3, yt = 3.0, p0 = 0.1).

for the 10 HSLM-A trains results in the vcrit,i listed in Table 4, which indicates that
the critical speed for the Canelas bridge is 263 km/h.
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(a)                                                                                   (b)

Figure 8: Complementary CDF of the subset simulations (HSLM-A3, yt = 3.0 m/s2,
p0=0.1) and corresponding Monte Carlo simulations with N = 100000. (a)
N=50, vcrit=263 km/h; (b) N=100, vcrit=263 km/h.

(c) (d)

Figure 8: (continued) Complementary CDF of the subset simulations (HSLM-A3,
yt = 3.0 m/s2, p0=0.1) and corresponding Monte Carlo simulations with
N = 100000. (c) N=150, vcrit=267 km/h; (c) N=200, vcrit=265 km/h.

HSLM A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

vcrit,i (km/h) 414 361 263 274 284 293 298 314 316 325

Table 4: Critical speeds for every HSLM-A.
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4 Conclusions & Contributions

The employment of subset simulation is key to an efficient assessment of structural
safety, since low probabilities of failure are estimated in this work with sample sizes
of 400, instead of the equivalent 100000 associated with traditional Monte Carlo sim-
ulation. The iterative nature of the presented algorithm allowed to determine critical
speeds with 2200 models, which is three orders of magnitude less than the total equiv-
alent Monte Carlo total from 5.

The proposed algorithm allows the evaluation of critical speeds in a timely man-
ner, contributing towards the study of the acceleration limit in ballasted track bridges.
Future studies in this matter should consider the physical limit as a random variable
in the case of new experimental studies existing.
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