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Abstract

Soil-structure interaction plays a major role in the dynamic response of partially-
buried structures such as portal frame railway bridges. However, it is seldom included
in numerical models, as it usually has associated a high computational cost. How-
ever, studies show that this intricate interaction mechanism is a cause of discrepancy
between experimental and measured modal parameters, which could induce an erro-
neous assessment of the serviceability limit states of the structures and uneconomical
bridge designs. For this reason, a study on an existing portal frame is conducted in
this work. First, the modal parameters are identified from experimental data. Then, a
3D finite-element numerical model considering the track-bridge-soil system is imple-
mented. Perfectly matched layers are used as absorbing boundaries. Dynamic stiff-
ness functions are derived and used to implement a simplified version of the model
on which the soil is substituted by a series of frequency-dependent spring-damper el-

1

Proceedings of the Eighteenth International Conference on 
Civil, Structural and Environmental Engineering Computing  

Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 10, Paper 2.2 

Civil-Comp Press, Edinburgh, United Kingdom, 2025 
ISSN: 2753-3239,  doi: 10.4203/ccc.10.2.2 

©Civil-Comp Ltd, Edinburgh, UK, 2025 



ements. The dynamic problem is solved by complex modal superposition to predict
the bridge response under operating conditions. Track irregularities are taken into ac-
count. The results obtained are satisfactory, allowing to obtain the bridge response
with reasonable accuracy and in an efficient manner.

Keywords: vibration, finite elements, experimental measurements, high speed, com-
putational effort, ballasted track.

1 Introduction

Portal frame bridges are a common constructive solution used in railway lines to im-
plement underpass crossings below the tracks. This allows to optimise space and fa-
cilitate the implementation of the train infrastructure in a coherent manner. This type
of bridge consists of a reinforced concrete rigid frame flanked by integral wing walls.
On the sides, its walls are surrounded by an embankment, therefore leaving a major
area of the structure in direct contact with the soil. Portal frames are also a recurrent
solution because of economical reasons, as they are relatively cheap and are usually
executed in a routine fashion. However, given the great number of portal frames in
modern railway networks, assessing the main factors that affect their design process
is relevant [1]. In this regard, a key aspect is the bridge dynamic performance, that,
in this type of bridges, is determined by the soil-structure interaction (SSI) [2]. Al-
though this is well-known, simulating SSI is generally complex and time-consuming.
Because of this, SSI is not always included in numerical models aimed at assessing
the dynamic performance of railway bridges.

In the case of partially-buried structures such as portal frames, the large contact
area with the soil provides a high capacity to dissipate energy, which can affect in
a notable way its modal properties and dynamic response under train passages. For
this reason, as some authors have pointed out, neglecting the dynamic stiffness of the
surrounding soil may induce divergences between numerical and experimental modal
parameters [3]. Consequently, this could lead to imprecision when determining the
bridge resonant speed and, in the end, to inefficient structural solutions [4, 5]. On
the contrary, considering SSI in the numerical simulations could favour a more real-
istic evaluation of the Serviceability Limit States in the design phase of new bridges
and also in the case of existing structures when a change in the traffic conditions is
required. Hence, further investigation should be conducted on SSI, as the exact im-
pact of this factor on the bridge dynamic response is still not well known, particularly
on this type of structures. This may also be explained by a lack of reliable simple
models to simulate SSI in a cost-efficient manner. Apart from that, works including
experimental-numerical validation on portal frames are seldom reported in the litera-
ture [1].

In view of this, this contribution presents a complete study on an existing portal
frame railway bridge with the following objectives: (i) to identify the modal parame-
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ters of the bridge from experimental data and (ii) to predict its dynamic response un-
der passing trains in an accurate and efficient manner. To this end, a 3D finite-element
(FE) numerical model of the structure is implemented including the track-bridge-soil
system. The soil domain is padded with perfectly matched layers (PML) to absorb the
radiating soil waves and satisfy Sommerfeld’s radiation condition. This full model is
used to obtain dynamic stiffness (also called impedance) functions in a subsequent 3D
FE simplified model in which the soil is substituted by a series of linear spring-damper
elements. Then, the procedure explained in [6] for implementing SSI on beam-type
bridges is adapted to the case of the portal frame and its dynamic response under train
passages is simulated based on complex modal superposition. Randomly-generated
track irregularities are included in the numerical model to assess the rail condition in
a more realistic manner. Additionally, the effect of vehicle-bridge interaction (VBI) is
introduced as an additional amount of damping, following the Equivalent Additional
Damping Approach (EADA) proposed in [7].

2 The portal frame

Located at the kilometric point 31+200 in the high-speed (HS) line Madrid−Sevilla,
the Camino de las Huertas underpass is a portal frame railway bridge. The bridge
deck is a broad structure of 22.1 m width and 8 m span length. The section of the
underpass consists of a rectangular integral box of 5.7 m height built with reinforced
concrete. The bridge holds three tracks: two for HS services and one for conventional
traffic. This condition leads to the most characteristic feature of the portal frame, as
it is divided along its width in two sections by means of a longitudinal joint, resulting
in two coupled structures: one below the conventional traffic track and another under
the HS tracks. Figure 1 shows two images of the portal frame. The bridge dimensions
can be seen on Figure 2, where the dashed line represents the longitudinal joint.

Figure 1: The structure under study: (a) the bridge, from the HS side, and (b) a Google
Earth satellite image.
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Figure 2: Dimensions of the bridge and accelerometer layout.

3 Modal identification

Data from an experimental program carried out in September 2022 was used to iden-
tify the modal parameters of the bridge. 27 piezoelectric accelerometers with nominal
sensitivity of 10 V/g were attached on the inner face of the slab, as indicated in Figure
2: 18 on the top slab (shown in red); 6 on the inner side of the vertical walls at 2.6 m
high (shown in yellow); and 3 on the floor (shown in blue). The dynamic response of
the bridge was recorded under the passage of 27 trains and also under no other exci-
tation than ambient vibration. Data was obtained at a sampling frequency of 4096 Hz
and then decimated to 256 Hz. A Chebyshev filter of 1 Hz was applied. Then, an op-
erational modal analysis (OMA) was carried out. The Enhanced Frequency Domain
Decomposition method (EFDD) was used to identify the bridge vibration modes. The
analysis revealed that the slab decoupling into two distinct structures results in an
asymmetric modal behaviour of the underpass, with the HS and conventional bridge
sections contributing to the modes in differing proportions. As a result, coupled or
mixed modes emerge, exhibiting deformations in both sections. Nevertheless, certain
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uncoupled modes are also observed in some instances.
Figure 3 shows the estimated modal parameters of the bridge, where the dashed

line represents the longitudinal joint. Among the identified modes, the first mode rep-
resents the decoupled longitudinal bending mode of the HS section. The second mode
is close in terms of frequency to the next one, however, this mode presents a more pro-
nounced deformation in the HS region. Therefore, the third mode could be identified
as the fundamental mode of the conventional section. Mode shapes 4 and 6 stand for
particular transverse bending modes of the conventional section, practically decoupled
from the rest of the bridge. Finally, the fifth mode presents a predominant transverse
deformation of the HS section. In order to estimate modal damping, this parameter
is calculated from the free vibrations of the structure left after train passages. This
approach is chosen as this situation is more representative of the real behaviour of
the bridge under operating conditions in comparison to when it is subjected to am-
bient vibration [8]. Among the results obtained, high damping ratios are estimated,
particularly in the first four modes, which denotes a clear influence of the soil.

(a) f1 = 22.41 Hz
ζ1 = 7.84 %

(b) f2 = 25.44 Hz
ζ2 = 6.74 %

(c) f3 = 26.80 Hz
ζ3 = 6.66 %

(d) f4 = 36.23 Hz
ζ4 = 4.49 %

(e) f5 = 44.27 Hz
ζ5 = 3.18 %

(f) f6 = 55.51 Hz
ζ6 = 2.52 %

Figure 3: Estimated modal parameters of the portal frame.

4 Numerical approach

This section presents the numerical procedure adopted to simulate the dynamic re-
sponse of the portal frame while maintaining a reasonable computational cost. To this
end, a comprehensive 3D finite element model is developed in the first place, consid-
ering the track, the bridge and the surrounding soil. This initial model is used to derive
dynamic stiffness functions to model SSI in a subsequent simplified model.
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4.1 The full soil-bridge-track interaction model

This model is implemented in ANSYS(R) v.25.1. In it, the tracks, the bridge structure
and the soil domain are simulated. To avoid spurious wave reflections at the model
boundaries, solid Perfectly Matched Layers (PML) elements are included. This allows
to reduce the required soil domain. Soil and PML lengths are determined based on
convergence studies as Lsoil = 6 m and LPML = 0.5 m, as indicated in Figure 4(a). In
total, three layers of PML elements are introduced. The meshing in the PML region
is discretised to fit between 5 and 20 elements in a single wave length λ = 2π · Cs/ω,
being Cs the shear wave propagation speed of the soil and ω the highest identified
natural frequency of the bridge [9]. The entire soil domain is considered homogeneous
with Cs = 350 m. This value is calibrated based on a preliminary calibration step
carried out on this model. The soil domain has dimensions of 24 m × 49.1 m × 7.5 m.
In total, the model has 1,340,132 degrees of freedom (DOF). An image of the model
is shown in Figure 4(b). The mechanical properties of the model are listed in Table 1.

Lsoil

Lsoil

LPML

Lsoil

Lsoil

Lsoil

LPML

Lsoil

z
x

(a)

49.1 m

24 m

(b)

Figure 4: Full track-bridge-soil interaction model: (a) main dimensions, and (b) view
of the FE bridge.

4.2 The simplified soil-bridge-track simplified model

This model is implemented based on an inertial decoupling of the track-bridge system
from the surrounding soil, which is substituted by a series of discrete linear frequency-
dependent spring-dampers that simulate the dynamic interaction of the soil with the
portal frame. These elements are arranged along 65 uniformly distributed points over
the area of the bridge-soil interface at the bridge walls and the bottom face of the
box slab. Three spring-dampers are located at each point, two tangential and one
perpendicular to the surface, as indicated in Figure 5(a). This model, shown in Figure
5(b) is implemented with 175,904 DOFs, which constitutes an important reduction in
comparison to the previous case.
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Entity Part Property Symbol Value Unit

Track

Rail

Elastic Modulus Er 2.10 · 1011 Pa

Moment of inertia Ir 3038 · 10−8 m4

Linear mass mr 60.34 kg/m

Rail pad
Stiffness Kd 1.00 · 108 N/m

Damping Cd 7.50 · 104 Ns/m

Sleepers

Elastic modulus Ep 3.60 · 1010 Pa

Poisson’s ratio νp 0.2 [-]

Mass mp 320 kg

Ballast

Elastic modulus Eb 1.10 · 108 Pa

Poisson’s ratio νb 0.2 [-]

Density ρb 1950 kg

Height hb 0.728 m

Bridge

Slab

Elastic modulus El 35.71 · 109 Pa

Poisson’s ratio νl 0.2 [-]

Density ρl 2500 [-]

Joint

Elastic modulus Ej 9522.50 Pa

Poisson’s ratio νj 0.2 [-]

Density ρj 2500 [-]

Soil Whole domain

Shear wave speed cs 350 m/s

Poisson’s ration νs 0.2 [-]

Density ρs 1950 kg/m3

Table 1: Mechanical properties of the model.

z
x

z
x

X

Z

Y

z

x
y

z

x
y

z
x

z

x
y

z
x

Clamped

z

x

y

z
x

z

x

y

z
x

Clamped

z

x

y

(a)

z
x

z
x

X

Z

Y

z

x
y

z

x
y

z
x

z

x
y

(b)

Figure 5: Simplified track-bridge-soil interaction model: (a) schematic front view, and
(b) view of the FE discretisation.
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4.3 SSI implementation

The SSI is first evaluated on the full model. To do so, a harmonic analysis is con-
ducted considering a distributed vertical force Fs(ω) on both rails of track 2 along
the bridge span. At each point on which a spring-damper will be attached, the dy-
namic stiffness can be calculated as the ratio between the resultant input force and
the point displacement in the corresponding direction: Kv,d(ω) = Fs(ω)/Us(ω),
obtaining the following properties of stiffness Kv(ω) = Re[Kv,d(ω)] and damping
Cv(ω) = Im[Kv,d(ω)]/ω for each spring-damper element [6]. In this work, the spring-
dampers are tuned to the fundamental frequency of the bridge f1.

To finalise the process, a subsequent calibration step is carried out on the mechan-
ical properties of the bridge, focusing specifically on the ballast density and the elas-
tic modulus of the bridge slab. Given the asymmetric modal behaviour of the por-
tal frame, it is found necessary to differentiate the mechanical properties of the two
bridge sections to achieve a close match with the experimental modal parameters. In
this sense, the ballast density of the HS and conventional sections is set to 2340 and
1560 kg/m3, respectively. On the other hand, the elastic modulus of the slab is cal-
ibrated as 30.35 and 26.07 GPa, respectively. Then, a modal analysis is conducted,
leading the results in Table 2, where the experimental and numerical bridge frequen-
cies are compared. The Modal Assurance Criterion (MAC) is used to assess similarity
between pairs.

Results f1 f2 f3 f4 f5 f6

Exp. 22.41 25.44 26.80 36.23 44.27 55.51

Num. 22.49 25.43 27.01 34.15 37.51 63.57

MAC 0.63 0.56 0.63 0.71 0.77 0.81

Table 2: Experimental and numerical bridge frequencies (in Hz) and MACs.

5 Solution to the dynamic problem

This section addresses the formulation of the dynamic problem, which is solved by
means of complex modal superposition. To this aim, mode shapes are computed with
ANSYS and then are exported to MATLAB. Subsequently, the following calculations
are conducted.

5.1 The SSI interaction problem

The equilibrium equation of the system, applied to the bridge model containing N
DOFs with initial conditions of displacement u(0) = u0 and velocity u̇(0) = u̇0, is:
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Mü (t) +Cu̇ (t) +Ku (t) = F (t) (1)

where M , C and K are the mass, damping and stiffness matrices. Due to the damp-
ing introduced by the spring-damper elements, the damping in the system is non-
proportional. As a result, mode shapes are complex and the position of each DOF is
defined by amplitude and phase. Thus, a set of 2N equations is required to evaluate
the solution of the N DOFs of the structure, that can be written from Eq. 1 as a first
order differential matrix equation:

Aẏ (t) +By (t) = P (t) (2)

where:

A =

[
C M
M 0

]
B =

[
K 0
0 −M

]
P =

[
F (t)
0

]
y(t) =

[
u(t)
u̇(t)

]
(3)

being y the state vector and A and B two real and symmetric matrices of dimensions
2N×2N . In the free vibration case, Eq. 2 yields Aẏ (t) + By (t) = 0. The trial
solution can be obtained as y(t) = Ψje

sjt, where sj is the j-th element of a total set
2N eigenvalues and Ψj is the corresponding eigenvector:

Ψj =

[
ϕj

sjϕj

]
(4)

Then, natural frequencies, damped natural frequencies and modal damping ra-
tios are determined from the eigenvalues as ωj = |sj|, ωdj = |Im[sj]| and ζj =
−Re[sj]/|sj|, respectively. The solution to Eq. 2 can be expressed as:

y(t) =
2N∑
j=1

Ψjzj(t) (5)

Taking into account the orthogonality conditions ΨT
j AΨk = 0 and ΨT

j BΨk = 0
for any pair of modes j ̸= k (where the superscript T indicates matrix transpose) and
normalising the eigenvectors to the matrix A (i.e., ΨT

j AΨj = 1), Eq. 2 results into a
set of 2N uncoupled equations [6], where pj(t) = ΨT

j P (t):

żj(t) + αjzj(t) = pj(t) (6)

This is a non-stiff differential equation that can be addressed numerically. In this
work, this equation is solved by means of a Runge Kutta (4,5) explicit algorithm.
Then, the bridge displacements are calculated through complex modal superposition,
as indicated below. This expression takes into account that eigenvalues and eigenvec-
tors appear as pairs of complex conjugates.
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u(t) =
N∑
j=1

2Re[ϕjzj(t)] (7)

5.2 Mode shapes normalisation

To proceed as in the previous section, mode shapes obtained with ANSYS (normalised
by default to the mass matrix M) need to be normalised to the A matrix when exported
to MATLAB. To this aim, a scaling parameter allowing to perform this operation is
derived below. Initially, mode shapes normalised to the mass matrix (as indicated by
the M superscript) fullfill that ΨT,M

j AΨM
j ̸= 1. Taking into account Equations 3 and

4, and further developing the previous condition, it can be expressed as:

ΨT,M
j AΨM

j =

[
ϕj

sjϕj

]T,M [
C M
M 0

] [
ϕj

sjϕj

]M
= ϕT,M

j CϕM
j + 2mjsj (8)

where mj is the modal mass. Additionally, because of orthogonality, modes satisfy
ΨT,M

j AΨM
k = 0 for any mode j ̸= k, from which it can be derived that ϕT,M

j CϕM
k =

−(sj + sk)ϕ
T,M
j MϕM

k . As eigenvalues appear as pairs of complex conjugates (sk =
s̄j), and knowing that ωj = |sj| and ζj = −Re[sj]/|sj|, the precedent expression can
be rewritten accordingly:

ϕT,M
j Cϕ̄

M
j = 2mjζjωj (9)

Now, Equation 9 is used to approximate the term ϕT,M
j CϕM

j in Equation 8 by
assuming that ϕT,M

j Cϕ̄
M
j ≈ ϕT,M

j CϕM
j . As the modal mass equals 1 due to mass

normalisation, Equation 8 results into:

ΨT,M
j AΨM

j = 2mjζjωj + 2mjsj = 2(ωjζj + sj) = δj (10)

where δj is the scaling parameter that allows to adapt the normalisation of the modal
shapes from M to A:

Ψj = ΨM
j /

√
δj (11)

Similarly, modes comply with ΨT,M
j BΨM

k = 0 because of orthogonality conditions.
This leads to ϕT,M

j Kϕ̄
M
j ≈ ϕT,M

j KϕM
j ≈ ω2

j considering the previous approach.
Then, further developing the expression ΨT

j BΨj = αj while scaling as indicated in
Equation 11 allows to obtain αj = (ω2

j − s2j)/δj , which can be used in Equation 5
to solve the dynamic problem. Eventually, the bridge modes are normalised with this
procedure and used to compute the solution as per Equation 6.
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5.3 Quasi-static and dynamic loads

Three excitation mechanisms are considered: a quasi-static contribution, a parametric
excitation and a dynamic loading. The quasi-static contribution is modelled as a se-
ries of moving forces travelling at a constant speed, therefore neglecting the inertial
effects of the vehicle. Then, the parametric excitation is induced by the moving loads
circulating along rails discretely supported at each sleeper. Lastly, the dynamic load-
ing includes the effect of track irregularities, which are modelled based on a stationary
Gaussian random process characterised by its one-sided power spectral density func-
tion (PSD) based on ISO 8606, as S(κx) = S(κx0)(κx/κx0)

−w with κx0 = 1 rad/m,
w = 3.5, and the sampling wave-number κx defined in steps of ∆κx = π/V rad/m in
the interval between the bogie passing frequency of the train divided by its travelling
speed (fpb/V · 2π = 2π/d, where d is the characteristic distance of the train) and the
ratio between the highest frequency of the bridge and the train velocity (fmax · 2π/V ).
Finally, a minor degree of track deterioration is assumed with S(κx0) = 1 × 10−9

m3 [10]. Subsequently, random unevenness profile samples r(x) are generated as a
superposition of harmonic functions with aleatory phase angles:

r(x) =

Np∑
n=1

√
2S(κx)∆κ cos(κxx− φn) (12)

where Np is the number of points, κx is the sampling wave-number, ∆κx is the wave-
number step and φn are the random phase angles uniformly distributed in the interval
[0, 2π]. Next, the irregularity profile is used to approximate the vehicle-track interac-
tion force Fv/t as a result of the track unevenness, as shown in Equation 13:

Fv/t(x, ω) = mw · d
2r(x)

dt2
+Kd,t(ω) · r(x) (13)

where mw is the vehicle unsprung mass and Kd,t(ω) the track dynamic stiffness. This
parameter is estimated from a harmonic analysis performed using the full track-bridge-
soil interaction model. It considers two identical concentrated forces, Fr1(ω) and
Fr2(ω), at midspan. Each load acts on one rail of the track. Then, the rail displace-
ments at the points where the forces are being applied are obtained as Ur1(ω) and
Ur2(ω). Finally, the track dynamic stiffness is computed as Kd,t(ω) =
1/2 · [(Fr1(ω) + Fr2(ω))/(Ur1(ω) + Ur2(ω))]. In a first approach, it is assumed that
Kd,t(ω) at midspan is representative for the totality of the track length. In an analo-
gous way to the calibration of the spring-dampers, Kd,t(ω) is admitted constant and
equal to the value attained at f1.

5.4 Additional damping

To obtain a more realistic prediction of the structural performance, the VBI benefit
may be approximated if an additional amount of damping ζtot is introduced in the
system. In this work, this quantity is determined as ζtot = ζb + ∆ζEADA. ζb is the
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structural damping of the bridge and is obtained based on the Eurocode criterion for
pre-stressed concrete bridges [11]. On the other hand, ∆ζEADA is the supplementary
damping ratio proposed by Yau et al. [7]. This ratio is calculated based on the re-
lationship between the modal properties of the train and the bridge. Eventually, ζtot
is introduced in the system through each eigenvalue sj under consideration, leading
to the subsequent modified eigenvalues sjd = −(ζj + ζTotal)|sj| + Im[sj]i. Then, the
dynamic load problem is solved as previously explained.

6 Response under train passages

The dynamic response of the portal frame is calculated under the passage of the
RENFE S103 train, which circulated in track 3 from Sevilla to Madrid at 228 km/h.
This conventional train has eight coaches and two driven passenger cars. As indi-
cated in Figure 6, its characteristic distance is 24.775 m. More information about it
can be found in Reference [12]. With respect to the additional damping introduced
to simulate this passage, ζtot = 2.77 with ζb = 1.84 and ∆ζEADA = 0.93. Below, Fig-
ure 7 shows the bridge vertical acceleration response in the time and in the frequency
domains. The experimental register is depicted in black. The case including the quasi-
static contribution (denoted as Q) and the track irregularities (denoted as I) is shown in
dark red colour. Apart from that, the light red curves represent the numerical response
when, in addition to the previous considerations, the additional damping ratio ζtot is
also included. Finally, the numerical response considering only the quasi-static con-
tribution and the additional damping is shown in blue. The data is filtered applying
Chebyshev filters with high-pass and low-pass frequencies of 1 and 30 Hz, respec-
tively. The experimental acceleration is extracted from sensor A15.

As Figure 7 suggests, a good approximation is attained in the cases where track
irregularities are considered. In contrast, when only the quasi-static contribution is
computed, the prediction for frequencies higher than 15 Hz underestimates the mea-
sured bridge acceleration. This highlights the relevance of simulating this excitation
mechanism to replicate the bridge behaviour at higher frequencies, as they contribute
to incrementing the bridge response. The effect of the additional damping is also
noticeable, particularly at the highest acceleration peaks in the frequency domain.

Figure 6: Scheme of axles of the train Siemens S103.
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Figure 7: Comparison of the vertical acceleration in the time and frequency domains.

7 Conclusions

In this contribution, a procedure to simulate SSI in an efficient manner is presented and
applied to the case of an existing portal frame. To this aim, first, SSI is evaluated on
a soil-track-bridge interaction model to obtain dynamic stiffness functions that sub-
stitute the soil in a subsequent simplified version of it. Then, the dynamic problem
with non-proportional damping is addressed and solved by means of complex modal
superposition [6]. The conclusions of this contribution can be derived as follows:

• The modal identification process was key to understand the modal behaviour of
the bridge and in the design phase of the model. In particular, differentiating the
mechanical properties of the HS and the conventional section was important for
replicating the real conditions of the structure.

• The proposed numerical approach has been successfully implemented. The for-
mulation enables an efficient solution of the dynamic SSI problem. Moreover,
the approach used to approximate the normalisation of the mode shapes could
be useful in similar cases.

• The results of the moving load analysis are satisfactory when track irregularities
are taken into account. Therefore, it can be concluded that the proposed SSI
modelling procedure provides a reliable estimation of the bridge response under
passing trains. Besides, the final results are achieved without incurring in an
excessive computational cost.

• In the present work, the dynamic excitation due to track irregularities is intro-
duced in an estimated way. However, the final results reflect the importance of
considering this excitation mechanism, as it has significantly improved the pre-
diction of the bridge response at frequencies higher than 15 Hz in comparison to
the case where only the quasi-static contribution is considered. Also, the addi-
tional damping has been practical to provide a more realistic bridge prediction
in certain frequency peaks close to the structural modes of the portal frame.
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properties on the dynamic response of simply-supported bridges under railway
traffic through coupled boundary element finite element analyises”, Engineering
Structures, 170, 78-90, 2018.

[5] P. Salcher, “Effect of soil-structure interaction on the dynamics of portal frame
railway bridges”, Bautechnik, 97(7), 490-498, 2020.

[6] P. Galvı́n, A. Romero, E. Moliner, E. Connolly, M.D. Martı́nez-Rodrigo, “Fast
simulation of railway bridge dynamics accounting for soil-structure interaction”,
Bulletin of Earthquake Engineering, 23, 3195-3213, 2022.

[7] J. Yau, M.D. Martı́nez-Rodrigo, A. Doménech, “An additional damping ap-
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