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Abstract 
 

This paper gives indications for the rail track design in order to allow train circulation 

at high speeds. This is demonstrated on a three-layer model of the railway track. This 

model should exhibit three critical velocities for resonance, however, very often the 

lowest value is replaced by the so-called pseudocritical velocity. The aim of this paper 

is therefore to tailor the geometry and material parameters of this model to provide 

properties leading to a significant reduction of the influence of the pseudocritical 

velocity so that only a slight increase in vibrations is detected. It is then possible to 

extend the range of traffic speeds to very high values without compromising the 

circulation safety. This is very important for the current trends of increasing the speed 

and capacity of the railway network.  
 

Keywords: three-layer model, integral transforms, semianalytical methods, critical 

velocity, moving loads, onset of instability. 
 

1  Introduction 
 

Environmental issues are of utmost importance nowadays. Closely related to this is 

the necessity to switch from road to rail transport and increase the capacity of the 

railway network. One way to increase the capacity of the network can be achieved by 

increasing the speed of travel, but excessive speed is related to the safety and comfort 

of passengers. Travelling speed is naturally limited by the critical velocity. The 

definition of the critical velocity is not unambiguous but usually corresponds to the 

lowest velocity of wave propagation in the railway track. Mathematically, it is defined 
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as the velocity for resonance, because when a constant force moves along the track at 

the critical velocity, then in the absence of damping, the deflections tend to infinity. 
 

The critical velocity for resonance can be accurately determined on numerical 

models. Detailed finite element models are frequently used, however reduced and 

simplified models offer a sufficient approximation to reality combined with 

computational efficiency, as has been demonstrated in classical works [1,2]. The 

possibility of certain simplifications has been also analysed by other researchers [3], 

the pyramid model has been extended and renamed as the stress cone theory in [4,5], 

where suitable formulas for estimating the characteristics of the three-layer model are 

given. This has been further refined, and additional confirmation of the adequacy is 

given in [6] for a wide range of possible mechanical and geometrical specifications 

related to the detailed finite element model. 
 

In simplified models such as layered models [1,2,5] consisting of a guide beam and 

supported by a set of point masses connected by spring-damper elements, this 

calculation can be performed in the Fourier domain by identifying at least one real-

valued double pole on the Fourier variable axis. Then under such conditions the result 

of the inverse Fourier transform tends to infinity. It has been shown that this resonance 

is not always present [7]. Considering a three-layer model, there should be five 

resonances, three of which can be named as the true critical velocity and two of which 

as the false critical velocity. It is important to perform the evaluation by analytical 

approaches, since numerical approaches cannot clearly distinguish a sharp peak from 

a resonance. For example, the frequently used Green’s function method needs 

damping for numerical stability to perform the numerical integration of a time series, 

[8]. In the presence of damping, the true resonance is never clear, a sharp peak may 

occur, but it is not certain that without damping the displacement would be infinite. If 

there is no true resonance, the term pseudocritical velocity should be used. The 

pseudocritical velocity can be determined by parametric analysis, but when it is not 

very well pronounced, then its value is ambiguous because the maximum may be 

located at different velocities for a maximum or minimum over the entire structure, or 

for the peak at the active point. 
 

 

The critical velocity for resonance is related to the moving force problem, which 

means that the load corresponds to a single constant force moving at a constant 

velocity over the structure. Then the transient part of the solution is not important, and 

the steady-state part can be solved directly. It the case of a true critical velocity, there 

are infinite displacements at the critical velocity, but for an infinitely larger velocity, 

the displacement at the active point is zero. This fundamental characteristic is not 

verified for pseudo or false critical velocities. The pseudocritical velocity is 

characterised by an increase in vibrations, but all deflections are always finite. No 

zero at the active point is observed for infinitely larger velocity. The false critical 

velocity is characterized by infinite displacements like a true resonance, but again no 

zero at the active point is observed for infinitely larger velocity. As for the connection 

to the instability of a single moving mass, then the real and pseudocritical velocities 

are associated with it, but not the false critical velocity. If fact, the pseudocritical 
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velocity replaces the true one when resonance is mathematically impossible and 

always indicates the lowest value. 
 

2  The Model and its Parameters 
 

The model considered in this paper is shown in Figure 1. It is characterised by a 

guiding beam described by its bending stiffness EI and mass per unit length m. The 

supporting structure is composed of point masses: ms (half sleeper mass) and mb 

(dynamically activated ballast mass) and spring-damper elements (kp and cp - stiffness 

and damping coefficients of the rail pads; kb and cb - stiffness and damping coefficients 

of the dynamically activated ballast mass; and kf and cf - stiffness and damping 

coefficients of the foundation). In addition, ks denotes the shear stiffness. While ms, 

mb, kp, cp, kb, cb and ks are usually given in discrete form, kf and cf are already 

distributed over the length. 

 

 

 
 

Figure 1: Three-layer model of the railway track. 

 

To facilitate the analytical steps of the solution, all parameters are introduced into 

the governing equations in their distributed form. The sleeper spacing ls is used to 

change the discrete parameters to their distributed counterparts. For convenience and 

ease of calculation, the model is finally described by a set of dimensionless 

parameters, the basis of which is the guiding beam on the Winkler foundation 

described by kf and cf. 
 

It has been shown that in most cases the pseudocritical velocity can alternatively 

be determined as the velocity at the vertical asymptote to the instability line 

determined for a one moving mass problem. To do this, one can choose infinitesimal 

damping, and an infinitesimal real-valued frequency and determine in a semianalytical 

manner the velocity for an infinitely large moving mass. However, there are cases 

where this asymptote does not exist, but the pseudocritical velocity does.  

These cases are characterized by a very small increase in vibrations, thus opening 

the way to extend the travel speed into the supercritical region. To select the most 

advantageous cases, some criteria need to be established. First of all, the increase in 

upward displacement, which is the most detrimental, must be as low as possible, and 
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the next resonant velocity or onset of instability for some realistic value of the moving 

mass must be as high as possible.  
 

This paper establishes guidelines on how to identify and find the most 

advantageous cases so that by careful combination of them the lowest pseudocritical 

velocity is barely visible and can be exceeded. The aim is therefore not to push the 

critical velocity to higher values, but to make it negligibly detrimental so that it can 

be overpassed.  
 

The allowable ranges of admissible mechanical parameters characterizing the rail 

track have been roughly summarized in [8], however, it should be noted that these 

ranges are still flexible, because of the current tendency of enlarging the spacing 

between sleepers, [9,10] or using new and lightweight materials. The reference beam 

is assumed in form of a guiding Euler-Bernoulli beam standing for the rail supported 

by a Winkler foundation and it is known that a very wide range of values can be found 

in the literature for this foundation stiffness [11,12]. However, within these ranges it 

is not possible to consider all possible combinations, as will be explained in the next 

section.  
 

3  Methods 
 

First, a set of parameters for describing the reference beam needs to be defined:

 4
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where χ is inverse of the characteristic length, vref is the critical velocity of the 

reference beam and α is used for the velocity ratio. The main parameters describing 

the three-layer model are two mass ratios and two stiffness ratios: 
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Additional parameters express the shear stiffness and damping ratios: 

 
2

 = s s
s

f

k l

EIk
, 

2
 =

p

p

s f

c

l mk
, 

2
 = b

b

s f

c

l mk
, 

2
 =

f

f

f

c

mk
 (3) 

Then, even if the range of parameters has been established in [8] as: 

 1;6 s
, 2;45 b

, 40.03;4.2 10  p
, 30.04;6 10  p

 (4) 

It is clear from Equation (2) that 

 0.015 126.58



 

p

b

, 0.022 2.05



 s

b

 (5) 

using the base values used for determination of the ranges in Equation (4). 
 

Next, test cases have been selected to analyse what characteristics can lead to the 

desirable situation. One of the selected cases is characterized by µs=3 and µb=10. 

Stiffness parameters are better characterized on a logarithmic scale, since for very 
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high values, indicators such as resonance and others become insensitive to any 

alterations. With this in mind, the following designation is introduced: 

 
( )0.05 1

0.03 10 pind

p
−

=  , 
( )0.05 1

0.04 10 bind

b
−

=   (6) 

With such defined indp and indb, running from 1 to 101, the values covered are: 

 0.03;3000p  , 0.04;4000b   (7) 

For the test case indb=20 and 63 has been selected. Then, the interesting part of the 

graphs, shown in Figure 2, is contained up to indp=51. 

 

 
 

Figure 2: Analysis of the tested case: 3s = , 10b = : (a) 20bind = ; (b) 63bind = . 

 

It is important for the analysis to establish how to read the graphs in Figure 2. First, 

the purple line indicates the velocity ratio at which the first peak is detected in upward 

displacements. These calculations are performed using the undamped steady-state 

solution. Since the minimum value is taken from the entire beam, to ensure an accurate 

value without unnecessarily analysing too long a part of the beam, in order to provide 

an exact value without unnecessary analysis of excessively long part of the beam, the 

roots of the characteristic equation are divided in a way that the propagating and 

evanescent waves are dealt with separately, and the function envelope is determined 

for the propagating part. The purple curve thus indicates the probable location of the 

pseudocritical velocity and should be smooth. However, sometimes there are step 

differences between adjacent velocities. This is caused by two facts: first – the peak 

is not fully developed, and therefore a second peak is actually indicated; second – 

there is a premature small peak that is not dominant and cannot replace the 

pseudocritical velocity. Distinguishing such cases may be important for the definition 

of some characteristic performance index, however, after choosing the optimal case, 

parametric analysis can confirm its effectiveness. However, for further purposes, this 

value is denoted as pseudocritical, αPCV. 
 

The red curve indicates the lowest true resonance, αres. This value is determined 

analytically. As already mentioned, the deflections for such a velocity tend to infinity, 
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and therefore such an occurrence should be as far away from αPCV as possible. The 

blue and orange curves are used for the lowest asymptote to the first branch of an 

instability line. The difference is that the blue curve is calculated for negligible 

damping and the orange one for a realistic but low damping of 1% for all levels, that 

is ηp=ηb=ηf=0.01. There are some differences, but not very significant. Finally, the 

green curve marks the lowest velocity for which instability occurs for the moving 

mass ratio ηM=50, αm50. The dimensionless moving mass ratio is defined as: 

 M

M

m


 =  (8) 

where M is the moving mass value. This curve additionally shows whether the 

instability indicated by one of the asymptotes can represent a real danger, because, 

very often the first instability branch indicates unreasonably high ηM. The optimal case 

is then defined as the case where the increase in upward displacements at the first peak 

min

PCVw  relative to the static downward displacement stw  is as low as possible and at 

the same time the first resonance or instability for ηM=50 is as far away from the first 

peak as possible; whichever occurs first is decisive. Therefore, the performance index 

is defined as: 
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where dimensionless displacement is defined as: 
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In Equation (10) wref is the static displacement on the reference beam and P is the 

applied force. 
 
 

4  Results 
 

By careful analysis of the PI in the test cases, the minimum values for the two indb=20 

and 63 have been found to be 1.385 and 0.076, respectively. The latter result is due to 

a premature peak and should be disregarded, the valid value is then 0.541. Several 

attempts have been made to run an optimization analysis, but due to the time required 

to fully analyse the test cases, a statistical analysis was performed. The response 

surface was determined for several cases; however, the optimal values were always 

located on its boundary and the predictions for the interior values were therefore 

compromised. One such case is shown in Figure 3. This case is characterized by µs=4, 

µb=12, indb=40 and ηs=0. The optimal PI=0.496 is obtained for indp=16. It can be 

seen that αres precedes αm50 (vertical line IN50) and is therefore decisive for the PI 

value. The increase in the upward displacements at αPCV is barely visible. This case 

indicates that the critical velocity can be overpassed by 44%, indicating a significantly 

expanded range for circulation velocities.  
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To reduce the optimization time, careful analysis revealed that the most likely cases 

of significant improvements are those where the difference between αres within the 

range of admissible indp is the largest. Such calculations can only be preformed in 

software with high number of digits precision, therefore this criterium was applied on 

α of the lowest asymptote for the moving mass problem at ηp=ηb=ηf=0.01, which can 

be run very quickly in Matlab.  

 

 
 

Figure 3: Parametric analysis of the tested case: 4s = , 12b = , 40bind =  and 

0s = : (a) enlarged vertical scale; (b) reduced vertical scale. 

 

A Monte Carlo simulation was performed, but by performing three independent 

runs with a large number of loops, several repeated results were detected indicating 

that the ‘rand’ function is vulnerable to using same values instead of exploring the full 

interval. The results for the optimal case, where the difference in values was 88.89% 

are shown in Figure 4. 

 

 
 

Figure 4: Optimum case from Monte Carlo simulation: 5.524s = , 44.129b = , 

44.887b = , 0.111s = . 
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A detailed analysis of the optimal case allowed for selection of the optimal 

PI=0.175. Unfortunately, this is an unrealistic case, because it is obtained for indp=7, 

leading to the ratio between stiffnesses of 0.0096, which is outside the allowable 

interval. Assuming indp=11, the ratio between stiffnesses is already acceptable, and 

the PI is still quite low, 0.190. The parametric analysis of these cases is reported in 

Figures 5 and 6. In the latter case, an even higher increase beyond αPCV is possible, 

132,5% until the first resonance, instead of 99.0%, but the increase in upward 

displacements is slightly higher, which leads to a worse PI. 

 

 

 
 

Figure 5: Parametric analysis of the optimal case: 5.524s = , 44.129b = , 

44.887b = , 0.111s = , 7pind = : (a) enlarged vertical scale; (b) reduced vertical 

scale. 

 

 

 
 

Figure 6: Parametric analysis of the optimal case: 5.524s = , 44.129b = , 

44.887b = , 0.111s = , 11pind = : (a) enlarged vertical scale; (b) reduced vertical 

scale. 
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Regarding the determination of realistic values for the track design, it is important 

to point out that each of these cases can cover a large range of possible scenarios. It is 

just possible to define some possible ranges for the definition of the ballast layer and 

then search within the best options for the ratios of stiffness and mass parameters 

within the ranges defined in Equation (5). 
 

5  Conclusions and Contributions 
 

This paper presents guidelines for optimizing the geometric and material 

parameters of railway tracks in order to increase circulation speeds above the critical 

velocity without compromising safety and comfort. It was shown that significant 

increases, on the order of 132%, can be achieved. This analysis is performed on a 

three-layer railway track model, which is generally accepted by other researchers as 

an adequate model, combining computational efficiency with reasonable relevance to 

real-world situations. Several analyses and techniques have been tested to see how to 

effectively predict the optimal case. 
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