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Abstract

A hybrid filter to remove Gaussian noise from computed tomography medical im-

ages is presented. The method combines in an efficient manner the advantages of

two denoising filters. In addition, a parallel filter based on this method is presented.

Implementation of the parallel algorithm on multi-core platform using Open Multi-

Processing is presented. Efficiency is measured in terms of execution time and in

terms of Peak Signal-to-Noise Ratio over medical computed tomography images. Ex-

perimental results show that Gaussian noise is reduced efficiently and image details

are preserved. The parallel implementation is compared to the sequential one, obtain-

ing significative values of speed-up.

Keywords: parallel computing, image processing, medical imaging, computed to-

mography, noise reduction, Gaussian noise.
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1 Introduction

Computed tomography (CT) is a fundamental medical imaging modality widely em-

ployed for diagnostic purposes and in image-guided interventions. However, CT im-

ages are often degraded by noise, primarily as a consequence of the image acquisition

process and efforts to minimize patient exposure to radiation. As radiation dose is

reduced, the level of noise inherently increases, thereby compromising image quality.

Consequently, effective denoising techniques are essential to ensure reliable analysis

of CT data. Among the various types of noise, additive Gaussian noise is the most

prevalent in CT imagery [1, 2]. This noise can also be superimposed with other noise

sources, which further complicates the denoising task. To address this issue, numerous

algorithms have been developed to suppress Gaussian noise (see, for example, [3–7]).

The Block-Matching and 3D Filtering (BM3D) method [7] presents outstanding

results in terms of noise suppression. However, BM3D’s high computational cost sig-

nificantly limits its applicability in time-critical or resource-constrained environments.

In this work, we propose a hybrid denoising method that combines the strengths of

the Guided Filter (GF) [8] and BM3D, aiming to improve both performance and ef-

ficiency. The guided filter, known for its edge-preserving smoothing capabilities and

low computational complexity, serves as a fast and effective pre-processing step to

enhance the input image before applying BM3D. This combination allows for better

structure preservation and noise reduction, while also optimizing the overall denoising

process.

In this context, this study builds upon these foundations by proposing a hybrid

GF-BM3D method with a parallel implementation. We leverage the guided filter’s

efficiency to pre-process the noisy input and reduce the load on BM3D, while paral-

lelizing the workflow to enhance scalability and applicability to real-world scenarios.

Section 2 describes the filter design. In section 3 the experimental results are shown

and section 4 presents the conclusions.

2 Methods

In this section, we present the proposed hybrid image denoising method, which inte-

grates the GF and the BM3D algorithms. The denoising process is carried out in two

stages. In the first stage, the guided filter is applied to the noisy image to perform an

initial smoothing while preserving important image structures. In the second stage, the

output of the guided filter is fed into the BM3D algorithm to perform a more refined

denoising. This two-step process aims to reduce the computational burden of BM3D

by attenuating the noise level beforehand and improving patch matching accuracy.
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2.1 Guided Filter

The GF filter [8] is an edge-preserving smoothing operator that leverages a guidance

image I to filter an input image p. The filter assumes a local linear model between the

guidance image I and the output image q, such that for a window ωk centered at pixel

k, the output is modeled as:

qi = akIi + bk, ∀i ∈ ωk, (1)

where ak and bk are linear coefficients assumed constant in ωk. These coefficients are

computed by minimizing the following cost function:

E(ak, bk) =
∑

i∈ωk

(

(akIi + bk − pi)
2 + ǫa2k

)

, (2)

where ǫ is a regularization parameter controlling the degree of smoothing.

The optimal coefficients are given by:

ak =

1

|ω|

∑

i∈ωk
Iipi − µkp̄k

σ2

k + ǫ
, bk = p̄k − akµk, (3)

where µk and σ2

k are the mean and variance of I in ωk, and p̄k is the mean of p in the

same window.

The final output q is obtained by averaging the overlapping windows:

qi =
1

|ω|

∑

k:i∈ωk

(akIi + bk). (4)

In the proposed hybrid method, the guided filter serves as a preprocessing step that

reduces high-frequency noise while maintaining image structures, which benefits the

subsequent BM3D filtering stage.

2.2 Block-Matching and 3D Filtering (BM3D)

The BM3D filter [7] is an image denoising algorithm that exploits the self-similarity of

patches in natural images. The algorithm operates in two main steps: hard-thresholding

and Wiener filtering, both performed in the transform domain.

Stage 1 - Hard Thresholding: Similar patches are grouped into 3D arrays called

groups, and a 3D linear transform (e.g., 2D DCT + 1D Haar) is applied. The coeffi-

cients are hard-thresholded to suppress noise:

X̂1 = T−1(Hλ(T (X))), (5)

where T and T−1 are the 3D transform and its inverse, and Hλ is the hard-thresholding

operator with threshold λ.
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Stage 2 - Wiener Filtering: Using the basic estimate from the first stage as a

reference, new 3D groups are formed and denoised using Wiener filtering:

X̂2 = T−1 (W (T (Z), T (X))) , (6)

where Z is the group from the noisy image, X is the reference group, and W is the

Wiener filtering function computed element-wise.

The outputs of both stages are aggregated using weighted averaging to form the

final denoised image.

2.3 Parallelization Strategy

To reduce the computational time of the hybrid denoising algorithm, we implement

a parallelization strategy based on domain decomposition. The image domain Ω is

partitioned intoP subdomains {Ωi}
P
i=1

, where P corresponds to the number of parallel

processing elements. This partitioning satisfies the following conditions:

Ωi ⊂ Ω,

P
⋃

i=1

Ωi = Ω, Ωi ∩ Ωj = ∅ for i 6= j. (7)

Each subdomain Ωi contains a distinct subset of rows of the image, allowing indepen-

dent denoising of image segments. Figure 1 shows an example where the image is

split into four horizontal stripes.

Figure 1: Image domain decomposition into 4 subdomains.

In the implementation, the guided filter is applied locally within each subdomain,

and care is taken to handle boundary effects by extending subdomains with a small

overlap. After filtering, the BM3D algorithm is independently applied to each region.

At the end of the computation, the subdomain results are gathered and recombined into

the final output image. This parallel design allows the method to scale effectively with

the number of processors and significantly reduces the execution time of the BM3D

stage.
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3 Results

We have coded the parallel implementation of the algorithm on a multi-core platform

using the Open Multi-Processing (OpenMP) [9]. Both the serial code and parallel

code were implemented in C. The GNU Compiler Collection version 11.4.0 was used.

We developed experiments on a multi-core AMD Ryzen Threadripper PRO 5955WX

(16 cores), 4.0 GHz, with 125 GB RAM, under the operative system Ubuntu 22.04.5

LTS.

For this purpose, CT medical images (see Figure 2) from Radiopaedia database

(Case Courtesy of A. Prof Frank Gaillard, Radiopaedia.org, rID 35508) have been

considered in the study. These images correspond to a normal brain of a 30 years old

female. CT images were corrupted with varying levels of Gaussian noise (variance

σ2 ∈ [0.005, 0.03]). To this end, the classical Gaussian-noise model [3] was adopted.

(a) Axial view (b) Sagittal view (c) Coronal view

Figure 2: CT images used in the experiments (a) Axial: 1024×904 pixels, (b) Sagittal:

822× 1024 pixels , (c) Coronal: 890× 1024 pixels.

Filter performance has been analyzed with the objective measure Peak Signal-to-

Noise Ratio (PSNR) [10] that measures the noise reduction. The PSNR is defined by

the following formula:

PSNR = 10 · log
10

(

MAX2

I

MSE

)

(8)

Where:

• MAXI : Represents the maximum possible pixel value of the image. For 8-bit

images, this value is typically 255.

• MSE: The Mean Squared Error (MSE) is the average of the squared differences

between the original image and the processed image. It is calculated as:

MSE =
1

N ·M

N
∑

i=1

M
∑

j=1

(I(i, j)−K(i, j))2 (9)
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where I(i, j) is the pixel value at position (i, j) in the original image, K(i, j) is

the pixel value at the same position in the processed image, and N ×M is the

size of the image (number of pixels).

The PSNR value is measured in decibels (dB), and a higher PSNR indicates better

quality. Table 1 presents the PSNR obtained for the CT images corrupted with differ-

ent levels of Gaussian noise with variance σ2. It can be observe that the filter obtains

outstanding PSNR values.

Noise Variance Axial View Sagittal View Coronal View

Noisy Filtered Noisy Filtered Noisy Filtered

σ2 = 0.005 24.44 31.36 24.56 30.75 24.33 30.75

σ2 = 0.01 21.44 29.15 21.56 28.58 21.34 28.72

σ2 = 0.02 18.46 26.63 18.58 26.13 18.39 26.34

σ2 = 0.03 16.76 25.03 16.88 24.57 16.60 24.78

Table 1: PSNR values for noisy and filtered CT images at different noise variances.

To measure the parallel performance, the speed-up SP is computed as:

SP =
Tseq

TP

(10)

where Tseq is the computational time of the sequential method and TP is the computa-

tional time of the parallel algorithm.

Tables 2, 3 and 4 show the computational time and speed-up obtained for the test

CT images contaminated with different levels of Gaussian noise. Results demonstrate

that the parallel algorithm achieves speed-ups in the range of 7.65 to 9.90 for the CT

Axial image, in the range of 7.35 to 9.03 for the CT Sagittal image, and in the range

of 7.95 to 9.47 for the CT Coronal image when using all 16 cores of the multi-core

system.

Cores σ2 = 0.005 σ2 = 0.01 σ2 = 0.02 σ2 = 0.03

Time Speed-up Time Speed-up Time Speed-up Time Speed-up

1 18.60 18.92 19.69 27.11

2 10.44 1.78 10.38 1.82 10.89 1.81 15.12 1.79

4 5.32 3.50 5.31 3.56 5.55 3.55 7.74 3.50

8 3.12 5.96 3.12 6.06 3.23 6.10 4.65 5.83

16 1.96 9.49 2.01 9.41 1.99 9.90 3.54 7.65

Table 2: Computational time in seconds and Speed-up for CT Axial image contami-

nated with Gaussian noise of different variances.
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Cores σ
2
= 0.005 σ

2
= 0.01 σ

2
= 0.02 σ

2
= 0.03

Time Speedup Time Speedup Time Speedup Time Speedup

1 16.59 16.60 16.85 23.72

2 9.58 1.73 9.68 1.71 9.84 1.71 13.51 1.75

4 4.97 3.34 4.98 3.33 5.00 3.37 7.05 3.36

8 2.89 5.74 2.84 5.85 2.96 5.70 4.05 5.86

16 1.87 8.87 1.87 8.85 1.87 9.03 3.23 7.35

Table 3: Computational time in seconds and speed-up for CT Sagittal image contam-

inated with Gaussian noise of different variances.

Cores σ2 = 0.005 σ2 = 0.01 σ2 = 0.02 σ2 = 0.03

Time Speed-up Time Speed-up Time Speed-up Time Speed-up

1 18.51 18.33 18.69 26.21

2 10.48 1.77 10.48 1.75 10.54 1.77 14.77 1.77

4 5.44 3.40 5.49 3.34 5.58 3.35 7.64 3.43

8 3.17 5.84 3.16 5.80 3.17 5.89 4.36 6.02

16 1.96 9.44 1.97 9.29 1.97 9.47 3.30 7.95

Table 4: Computational time in seconds and Speed-up for CT Coronal image contam-

inated with Gaussian noise of different variances.

Figures 3, 4 and 5 present the filter outputs for the axial view CT image contami-

nated with different levels of Gaussian noise (σ2 = 0.005, 0.01, 0.02, 0.03) for visual

comparison. It can be observed the efficient denoising performance and the good con-

servation of the edges and contours of the image.

4 Conclusions

A parallel method to reduce Gaussian noise in CT images has been presented. This

method combines, in two stages, the guided filter and the block-matching and 3D fil-

tering method. The method has been implemented on multi-cores using OpenMP. The

implementation has been used to reduce the Gaussian noise on real CT medical im-

ages from the from Radiopaedia database. Experiments show that the filter efficiently

reduces noise and preserves image structures, obtaining competitive values in terms

of the PSNR objective measure. The guided filter, used as a preprocessing stage in

the proposed method, improves BM3D filtering by reducing high-frequency noise and

preserving image structures. The parallel algorithm introduced demonstrated a signif-

icant speed-up, resulting in reduced computational times that make the new method

appropriate for medical image processing. In future works, we will implement the

algorithm on clusters of multicores using hybrid MPI-OpenMP programming and on

GPUs using CUDA.
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(a) Axial image (b) Corrupted σ
2
= 0.005 (c) Filtered σ

2
= 0.005

(d) Corrupted σ
2
= 0.01 (e) Filtered σ

2
= 0.01

(f) Corrupted σ
2
= 0.02 (g) Filtered σ

2
= 0.02

(h) Corrupted σ
2
= 0.03 (i) Filtered σ

2
= 0.03

Figure 3: Filter outputs for visual comparison. Axial view contaminated with different

levels of Gaussian noise.
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(a) Sagittal image (b) Corrupted σ
2
= 0.005 (c) Filtered σ

2
= 0.005

(d) Corrupted σ
2
= 0.01 (e) Filtered σ

2
= 0.01

(f) Corrupted σ
2
= 0.02 (g) Filtered σ

2
= 0.02

(h) Corrupted σ
2
= 0.03 (i) Filtered σ

2
= 0.03

Figure 4: Filter outputs for visual comparison. Sagittal view contaminated with dif-

ferent levels of Gaussian noise.
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(a) Coronal image (b) Corrupted σ
2
= 0.005 (c) Filtered σ

2
= 0.005

(d) Corrupted σ
2
= 0.01 (e) Filtered σ

2
= 0.01

(f) Corrupted σ
2
= 0.02 (g) Filtered σ

2
= 0.02

(h) Corrupted σ
2
= 0.03 (i) Filtered σ

2
= 0.03

Figure 5: Filter outputs for visual comparison. Coronal view contaminated with dif-

ferent levels of Gaussian noise.
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