

1

Abstract

One way to develop a new nonlinear system model is to use its sensitivity study. The

global sensitivity study of nonlinear systems requires a lot of parameter combinations

and, therefore a lot of calculations. As the differential equations are independent of

each parameter combination the process can be accelerated with parallelization. The

aim of the research was to parallelize Sobol’s sensitivity study of nonlinear systems

with a Duffing-type vibration system as an example. Using Komondor HPC different

configurations were tested from which the OpenMP with 128 threads gave the best

results. With the OpenMP configuration a strong and weak scalability study was

performed, and it was shown that the problem is well scalable. Using job arrays 16

computers were utilized and a 1397.95-fold speedup could be achieved. With the

results it will be possible to carry out the sensitivity analysis of difficult nonlinear

systems effectively.

Keywords: parallelization, sensitivity study, nonlinear system, numerical simulation,

HPC, Sobol’s method

1 Introduction

With sensitivity study, it is possible to develop a system model. It can be examined

how the change in certain parameters affects the system’s behaviour [1]. There are 3

main types of sensitivity analysis: screening, local and global sensitivity study [2].

With a global sensitivity study, a detailed parameter space can be examined. However,

Parallelization of Global Sensitivity Study of

Nonlinear Systems Using Komondor HPC

F. Hajdu1, C. Hajdu2 and L. Környei3

1Department of Machine Design, Faculty of Mechanical Engineering, Informatics and

Electrical Engineering, Széchenyi István University, Győr, Hungary
2Department of Informatics, Faculty of Mechanical Engineering, Informatics and

Electrical Engineering, Széchenyi István University, Győr, Hungary
3Department of Mathematics and Computational Sciences, Faculty of Mechanical

Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr,

Hungary

Proceedings of the Eighth International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 12, Paper 2.5

Civil-Comp Press, Edinburgh, United Kingdom, 2025
ISSN: 2753-3239, doi: 10.4203/ccc.12.2.5

©Civil-Comp Ltd, Edinburgh, UK, 2025

2

the global sensitivity study of nonlinear systems with a lot of parameters requires a

lot of calculations, which can be accelerated with parallelization [3].

There are several examples in the scientific literature of solving nonlinear systems

numerically and their sensitivity study. Study [4] presents a nonlinear model

predictive control algorithm in the case of nonlinear systems like an inverted

pendulum and a semi-active damper. Monte Carlo simulations were calculated in

parallel. With parallelization using a GPU the results could be calculated within a few

milliseconds.

In reference [5] the sensitivity study of bar-space trusses is presented. Single-level

and multilevel MPI-based parallel algorithms were used to accelerate the calculations.

The parallelization was efficient, using 10 processors an 8-fold speedup could be

achieved, which means 83.5% efficiency.

Study [6] proposes a novel methodology and post-processing of agent-based

simulations. To accelerate the lot of computations the methods and the post-

processing was parallelized using a supercomputer and Univa Grid Engine. With

parallelization 273 CPU core days simulations were finished within several hours.

In reference [7] dynamic optimization problems using differential-algebraic equations

were accelerated using parallel algorithms. Utilizing 8 cores a 4-fold speedup could

be achieved in the case of 13500 differential equations and 75 parameters on a

Windows-based system. The algorithm was tested on polymerization and chemical

processes.

Study [8] describes PAPIRUS, which is a toolkit for sensitivity and statistical analysis

for nonlinear systems. There was a large amount of data, which was broken into a

series of instructions and discrete parts with parallelization. To accelerate the

calculations multiprocessor workstation and a network of workstations were utilized.

In reference [9] a global sensitivity analysis and parameter identification of a

microbial continuous culture is presented. The optimization task was accelerated with

a parallel algorithm using broadcasting. After broadcasting a Monte-Carlo simulation

was performed on the distributed data.

In reference [10] a new method is developed for sensitivity analysis in the case of

optimization problems of dynamical systems. The method was effectively parallelized

with a master-slave algorithm using MPI, where the system of differential equations

was distributed over more processors.

In study [11] an inverse simulation task is solved with a Bayesian estimator in the case

of an earthquake model. Since this method is computationally expensive, a

supercomputer was used for the analysis.

Tutorial [12] presents the parallelization of Sobol’s and Morris’s global sensitivity

study in the case of the Lotka-Volterra model. The parallelization can be utilized using

a GPU.

Based on the literature review it can be stated that several different tasks related to

sensitivity study can be solved effectively using parallelization. However, besides the

mentioned tutorial [12] not many studies dealt with the sensitivity study of nonlinear

systems using Sobol’s method. In this paper Sobol’s sensitivity study is performed in

parallel in the case of a relatively simple nonlinear system using the Komondor HPC

(high performance computing) cluster. The aim of this research was to test the

parallelization possibilities of Sobol’s sensitivity study of nonlinear systems to carry

3

out the sensitivity study of more difficult systems in further research. This paper is

organised as follows: first, the selected sensitivity study and the chosen nonlinear

system are briefly described. After that, the parallel algorithms and the metrics of

parallelization are presented. It is followed by the presentation of the achieved results.

The paper concludes with further research tasks.

2 Methods

There are several methods for global sensitivity analysis, like FAST and Morris [2].

For this study Sobol’s variance-based method was selected as it can give quantitative

results via indices [13]. The indices can be calculated as follows:

𝑆𝑇 =

𝑣𝑎𝑟(𝜇𝑇(𝑥𝑇))

𝑣𝑎𝑟(𝑌)
 (1)

𝑆𝑖 =

𝑣𝑎𝑟(𝜇𝑖(𝑥𝑖))

𝑣𝑎𝑟(𝑌)
 (2)

𝑆𝑖𝑗 =

𝑣𝑎𝑟(𝜇𝑖𝑗(𝑥𝑖𝑗))

𝑣𝑎𝑟(𝑌)
 (3)

where 𝑣𝑎𝑟(𝜇𝑇(𝑥𝑇)), 𝑣𝑎𝑟(𝜇𝑖(𝑥𝑖)) and 𝑣𝑎𝑟(𝜇𝑖𝑗(𝑥𝑖𝑗)) are the conditional variance of a

selected parameter and 𝑣𝑎𝑟(𝑌) is the variance of the output variable [14].

To perform a sensitivity analysis a parameter set and an output variable is necessary.

The parameter set is generated with Saltelli’s sampling method [14].

To test the parallel program a simple system, a Duffing-type nonlinear vibration

system was selected (Figure 1).

Figure 1: Duffing-type nonlinear vibration system

The system equation can be given by the following formula.

 𝑑2

𝑑𝑡2
𝑥(𝑡) +

𝑐

𝑚

𝑑

𝑑𝑡
𝑥(𝑡) +

𝑘

𝑚
(−𝑥(𝑡) + 1000𝑥(𝑡)3)𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) (4)

4

where 𝑚 is the mass, 𝑘 is the spring stiffness, 𝑐 the damping coefficient, 𝐴 the

amplitude of the excitation signal, and 𝜔 is the angular velocity of the sinusoid

excitation signal. The boundaries of the variables are shown in the Table 1.

Variable Minimum Maximum

𝑚 100 800

𝑘 10000 60000

𝑐 300 3000

𝐴 0 0.5

𝜔 1 30

Table 1: Boundaries of the parameters

The root mean square (RMS) of acceleration was selected as the output variable as it

is widely used in the case of vibration measurements. For that, the system of

differential equations was solved numerically. The simulation time was 50 s and the

timestep was 0.01 s. The acceleration was calculated at each timestep and then the

results were stored in an array. After that the RMS of acceleration can be calculated

with the following formula [15]:

𝑅𝑀𝑆 = √
∑ 𝑎𝑖

2𝑛
𝑖=1

𝑛
 (5)

where 𝑎𝑖 is the 𝑖𝑡ℎ value of acceleration and 𝑛 is the number of acceleration values.

The global sensitivity study of the presented system with 6144 parameter

combinations was already carried out using an HP Omen laptop with Intel® Core

(TM) i7-7700 HQ CPU @2.80 GHz processor with 8 nodes. For the sensitivity study

Python’s SALib library was used [16]. The global sensitivity study usually requires a

lot more parameter combinations which means a lot of calculations. Since each task

(calculation with different differential equation) is independent and there is no shared

data the task can be easily parallelized.

First a Python and a C++ program were compared with 192 parameter combinations

in the case of 1 node using Komondor. The execution time of the C++ program was

0.461 seconds, while in the case of the Python program, it was 50.87 seconds. Using

the same configuration on the aforementioned laptop the simulation runtime was

80.76 s using Python. To accelerate the calculations therefore the C++ program was

used for solving the system of differential equations. The parameter generation and

the sensitivity study were still carried out with Python [17], only the calculations were

performed with an HPC and C++ (Figure 2).

5

Figure 2: Flow-chart of the sensitivity study program

The parameters are stored in a text file, which is read by the C++ program.

BoostODEInt library was used for creating the state variables and solving the

differential equation system with Runge-Kutta Dormand-Prince 5

(runge_kutta_dopri5) solver [18]. The results (values of RMS of acceleration) are

stored in a vector and then this vector is written to a text file.

In order to find the optimal configuration both OpenMP, MPI, and hybrid programs

were tested. The calculation time of solving the system of differential equations was

measured by each.

In the case of the OpenMP program #omp pragma parallel for was used. The number

of threads was set in a batch script. The pseudo-code is shown in Table 2.

Table 2: Pseudo code of the OpenMP program

6

In the case of MPI first the MPI environment is initialized. Then the vectors, which

store the parameters are initialized. Then the data is distributed amongst the nodes

using MPI_scatter. Then the systems of differential equations are solved and the

results are stored in a vector. Then the data is collected using MPI_gather. Then the

results are written to a text file and the MPI is finalized. The pseudo-code is shown in

Table 3.

Table 3: Pseudo code of the MPI program

In the case of the hybrid approach first the MPI environment is initialized. Then the

vectors, which store the initial data are initialized. Then the data is distributed amongst

the nodes using MPI_scatter. Then the data is further distributed amongst the threads

with #omp pragma parallel for. Then the vectors that store the results are set and the

results are collected using MPI_gather. Finally, the results are written to a text file and

the MPI is finalized. The pseudo-code is seen in Table 4.

7

Table 4: Pseudo code of the hybrid program

The metrics to measure the efficiency of a parallel algorithm are among others

speedup, efficiency and scalability. The speedup (𝑆) is the ratio of the sequential

execution time (𝑇𝑠) to the parallel program execution time (𝑇𝑝) [19].

𝑆 =

𝑇𝑠

𝑇𝑝
 (6)

Efficiency (𝐸) is the ratio of the speedup (𝑆) and the number of resources used (𝑛)

[20]:

𝐸 =

𝑆

𝑛
 (7)

Strong scaling shows how increasing the number of resources affects performance in

the case of the same task size [21]. Weak scaling shows how the same amount of jobs

is performed on different numbers of resources [22].

For the tests, Komondor HPC (184 nodes, each 2 pieces of 64 core AMD EPYC™

7763 (Milan) CPU and 256 GB RAM (23552 core in total), 200Gb/s Slingshot

interconnect) was used.

8

3 Results

First, it was examined which configuration gave the best results from OpenMP, MPI,

and hybrid approach. There was 786432 parameter combinations. 5 tests were run to

find out the best combination. The time was measured with Chrono library’s high-

resolution clock. The runtime of solving the differential equations was measured,

therefore the starting time was right before entering the cycle and the end time was

after the cycle. The results are shown in Figure 3.

Figure 3: Calculation time in the case of different configurations (1: OpenMP128t,

2: MPI128p, 3: hybrid 2x64, 4: hybrid 4x32, 5: hybrid 8x16, 6: hybrid 32x4, 7:

hybrid 32x4, 8: hybrid 64x2)

It can be seen that the OpenMP128t was the best combination utilizing a full

computer, therefore it was used for further research. A scalability test was carried

using OpenMP. The results are shown in Figure 4.

Figure 4: Speedup (left) and efficiency (right) in the case of different number of

threads

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

C
al

cu
la

ti
o

n
 t

im
e

(s
)

Configuration

1

2

4

8

16

32

64

128

1 4 16 64

Sp
ee

d
u

p

Number of threads

0

20

40

60

80

100

120

1 4 16 64

Ef
fi

ci
en

cy
 (

%
)

Number of threads

9

It can be seen that the problem is scalable, as with increasing the number of threads

the speedup increases nearly linearly. A 108.22-fold speedup could be achieved at the

largest number of threads. The efficiency decreased to 84.55% as the number of

threads increased.

A weak scaling test was also carried out starting with starting with 6144 parameters

with 1 thread. The results are shown in Figure 5.

Figure 5: Scaled speedup and weak scale efficiency in the case of using OpenMP

It can be seen that the weak scaling test is nearly linear. However, the weak scale

efficiency decreased as the number of threads increased.

As there are more difficult systems and even more parameters it might be necessary

to distribute the calculations on more computers. It can be done using OpenMP and

array jobs. A test run was performed using more computers. The results are shown in

Figure 6 and Figure 7.

Figure 6: Calculation times with more computers using array jobs

1

2

4

8

16

32

64

128

1 4 16 64

Sc
al

ed
 s

p
ee

d
u

p

Number of threads

0

20

40

60

80

100

120

1 4 16 64

W
ea

k
sc

al
e

ef
fi

ci
en

cy
 (

%
)

Number of threads

0

2

4

6

8

10

12

14

1n 2n 4n 8n 16n

C
al

cu
la

ti
o

n
 t

im
e

(s
)

10

Figure 7: Speedup (left) and efficiency (right) in the case of different number of

computers using array jobs

The calculation time decreased from 11.482 to 0.946 s. It can be seen that a linear

speedup could be achieved. A 1397.95-fold speedup could be achieved using 16

computers. It means that even a higher amount of speedup could be achieved using

more computers. As it was a test to examine the performance of array jobs no further

computers were utilized. Besides the efficiency also decreased from 85% to 63%. It

is the task of further research to find out the cause of it. The achieved results are still

promising because using HPC 786432 parameter combinations could be solved in less

than a second. In the case of more difficult systems, it can save significant time.

The results of the sensitivity analysis using 786432 parameter combinations is shown

in Figure 8.

Figure 8: Sensitivity indices in the case of 786432 parameter combinations (left) and

6144 parameter combinations [16] (right) (above: first order and total sensitivity

indices, below: second order sensitivity indices)

1

4

16

64

256

1024

1 2 4 8 16

Sp
ee

d
u

p

Number of computers

0

20

40

60

80

100

1 2 4 8 16

Ef
fi

ci
en

cy
(%

)

Number of computers

0

0,2

0,4

0,6

0,8

1

m k c A ω

S1 ST

0

0,2

0,4

0,6

0,8

1

m k c A ω

S1 ST

0

0,1

0,2

0,3

0,4

0,5

m,k m,c m,
A

m,
ω

k,c k, A k, ω c, A c, ωA, ω

11

It can be seen that more parameter combinations changed the sensitivity indices, and

even the order of parameter sensitivity changed. The least influential parameter was

the mass and the most influential parameters were the amplitude and the angular

velocity of the excitation signal. The second-order sensitivity indices also became

smaller, which means that there were fewer parameter interactions. However, it was

still larger than the first-order sensitivity indices, which means that the parameter

interactions had more influence on the RMS of acceleration, than a single parameter

alone.

To summarize the results for solving a lot of different differential equation systems

with different parameters the OpenMP with 128 threads configuration gave the best

results using Komondor HPC. A scalability test was also performed including weak

and strong scaling from which it was observed that the problem is scalable, however

the efficiency decreased as the number of threads increased. A test was also performed

in which more computers were utilized using array jobs. With this even more

computing resources could be utilized and even a larger speedup (1397.95-fold) could

be achieved. With the presented study it was shown that the global sensitivity study

of nonlinear systems can be effectively parallelized in the case of a simple system.

From the results and the experience from the presented study, the sensitivity study of

more difficult nonlinear systems with much more parameters can be effectively

carried out. As seen in the Introduction several studies dealt with the parallel global

sensitivity study of different systems, but they were mostly biological systems. In this

study, the global sensitivity study of a nonlinear vibration system was carried out in

parallel. Also, no examination of different configurations was carried out in the related

scientific paper. The main drawback of the presented study is that it requires a lot of

calculations, therefore it might cost a lot of CPU hours. Another limitation of the

current study is that it was only tested on a relatively simple system. An important

further research task is to carry out the sensitivity study of more difficult nonlinear

systems.

4 Conclusions

In this paper, the parallelization of the global sensitivity study of nonlinear systems

was presented using a nonlinear Duffing-type vibration system and the RMS of

acceleration as the output variable. The most time consuming-part, which is solving

the differential equation system was parallelized using a C++-based program on an

HPC. It was tested which configuration was the best from pure OpenMP, pure MPI,

and hybrid approaches. It was found that the program with OpenMP could solve the

system of equations the fastest, therefore it was selected for further examinations.

Strong scaling and weak scaling tests were performed using OpenMP. It was found

that the problem is well scalable as the speedup and the scaled speedup increased

nearly linearly as the number of threads was increased. A test was also performed to

utilize more computers for the calculations using job arrays. It was found that using

16 computers with 128 threads a 1397.95-fold speedup could be achieved. This

speedup showed that job arrays can be effectively used for solving a lot of differential

equations with a lot of different parameter combinations. As the results are promising

further task is to carry out the global sensitivity study of more difficult nonlinear

12

systems like a fire truck suspension and different mobile robots. Another research task

is to utilize GPU as well.

Acknowledgements

The Authors acknowledge KIFÜ (Governmental Agency for IT Development,

Hungary) for giving us access to the Komondor HPC facility based in Hungary.

References

[1] A. Saltelli, K. Aleksankina, W. Becker, P. Fennell, F. Ferretti, N. Holst, S. Li,

Q. Wu, "Why so many published sensitivity analyses are false: A systematic

review of sensitivity analysis practices", Environmental Modelling & Software

114, 29-39, 2019

[2] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M.

Saisana, S. Tarantola, "Global Sensitivity Analysis" The Primer, John Wiley &

Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, England, 2008

[3] D. Bartuschat, U. Rüde, "A scalable multiphysics algorithm for massively

parallel direct numerical simulations of electrophoretic motion", Journal of

Computational Science 27 147-167, 2018

[4] S. Ohyama, H. Date, "Parallelized nonlinear model predictive control on GPU",

in "Proceedings of 11th Asian Control Conference (ASCC) ", 1620-1625., 2017

https://doi.org/10.1109/ASCC.2017.8287416

[5] P. K. Umesha, M. T. Venuraju, D. Hartmann, K. R. Leimbach, "Parallel

Computing Techniques for Sensitivity Analysis in Optimum Structural Design",

Journal of Computing in Civil Engineering 21 (6) 463-477, 2007

[6] A. Niida, T. Hasegawa, S. Miyano, "Sensitivity analysis of agent-based

simulation utilizing massively parallel computation and interactive data

visualization", PLoS One 14 (3), Paper e0210678, 2019

[7] A. Hartwich, K. Stockmann, C. Terboven, S. Feuerriegel, W. Marquardt,

"Parallel sensitivity analysis for efficient large-scale dynamic optimization",

Optimization and Engineering 12, 489-508, 2011

[8] J. Heo, K. D. Kim, "PAPIRUS, a parallel computing framework for sensitivity

analysis, uncertainty propagation, and estimation of parameter distribution",

Nuclear Engineering and Design 292, 237-247, 2015

[9] K. Gao, X. Zhang, E. Feng, Z. Xiu, "Sensitivity analysis and parameter

identification of nonlinear hybrid systems for glycerol transport mechanisms in

continuous culture", Journal of Theoretical Biology, 347, 137-143, 2014

[10] R. Serban, "A parallel computational model for sensitivity analysis in

optimization for robustness", Optimization Methods and Software 24, 105-

121, 2009

[11] K. Nakao, T. Ichimura, K. Fujita, T. Hori, T. Kobayashi, H. Munekane,

"Massively parallel Bayesian estimation with Sequential Monte Carlo sampling

for simultaneous estimation of earthquake fault geometry and slip distribution",

Journal of Computational Science 81, Paper 102372, 2024

13

[12] V. K. Dixit, C. Rackauckas, "GlobalSensitivity.jl: Performant and Parallel

Global Sensitivity Analysis with Julia", Journal of Open Source Software 7 (76),

Paper 4561, 2022

[13] M. Tosin, A. M. A. Côrtes, A. Cunha, "A Tutorial on Sobol’ Global Sensitivity

Analysis Applied to Biological Models", in: da Silva F.A.B., Carels N.,

Trindade dos Santos M., Lopes F.J.P. (eds), "Networks in Systems Biology:

Applications for Disease Modeling", Springer International Publishing, 93–118,

2020

[14] A. Saltelli, "Making best use of model evaluations to compute sensitivity

indices", Computer Physics Communications 145 (2), 280–297, 2002

[15] M. Arraigada, M. Partl, "Calculation of displacements of measured

accelerations, analysis of two accelerometers and application in road

engineering", in "6th Swiss Transport Research Conference (STRC 2006) ",

2016

[16] F. Hajdu, "Global Sensitivity Study of a Duffing-Type Nonlinear Vibration

System", Strojnicky Casopis / Journal of Mechanical Engineering 74 (2), 17-

24., 2024

[17] "SALib - Sensitivity Analysis Library in Python"

https://salib.readthedocs.io/en/latest/user_guide/basics.html (acessed:

04.08.2024)

[18] K. Ahnert, M. Mulansky , "Odeint – Solving Ordinary Differential Equations in

C++", AIP Conference Proceedings 1389 (1) 1586–1589, 2011

[19] L. Környei, G. Kallós, D. Fülep, "Parallel Computations on the Blade Server at

Széchenyi István University", Acta Technica Jaurinensis, 3 (1), 111-126, 2010

[20] G. Lencse, I. Derka, "Testing the Speed-up of Parallel Discrete Event

Simulation in Heterogeneous Execution Environments", in "Proceedings of the

the ISC'2013, 11th Annual Industrial Simulation Conference", pp. 101-107,

2013

[21] F. Magoules, F.-X. Roux, P. Iványi, "Parallel Calculation Methods (in

Hungarian) ", Pollack Press, Pécs, Hungary 2018

[22] M. Aldinucci, V. Cesare, I. Colonnelli, A. R. Martinelli, G. Mittone, B.

Cantalupo, C. Cavazzoni, M. Drocco, "Practical parallelization of scientific

applications with OpenMP, OpenACC and MPI", Journal of Parallel and

Distributed Computing 157 13-29, 2021

