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Abstract

In this contribution, we present a Distributed Data Parallel (DDP) approach for op-
timizing an analytical hierarchical Tucker in finite basis representation functional
Tucker representation (HT-FBR) of high-order multivariate functions. We achieve
up to a 10x speedup compared to the benchmark on a 6D proof-of-concept dataset
and 2x speedup on a 12D Ethene trajectory dataset trained on 1, 2, 4 and 8 GPUs.
This speedup is attributed to our implementation of an element-wise GPU paralleliza-
tion algorithm for both forward and backward propagations, as well as a customized
dataset and data loader configuration. We also show that the model trained on multi-
GPU has less overfitting issue than the one trained on a single CPU/GPU. This paves
the way to a large scale high-performance training schema and model parallelization
on multi-GPU setting, especially the parallelism on levels of the nodes based on their
binary tree dependency. On the other hand, improving the accuracy and reducing
overfitting as a function of number of GPUs.

Keywords: functional Hierarchical Tucker format, finite basis representation, deep
learning, multi-GPU parallelism, DDP, high-dimensional fitting



1 Introduction

A tensor is a multidimensional array of numerical data that naturally arises in fields
such as solving partial differential equations (PDESs) like Poisson equation and Navier-
Stockes equation, as epitomized by quantum dynamical calculations, and, more re-
cently, the deep learning community etc. Let us assume a tensor A € RN0XN1Xe X Ny XNy
where N, 1 € {0, --- ,d — 1} is a set of positive integers. The number of data-points
grows exponentially with the number of dimensions, a phenomenon commonly re-
ferred to as the “curse of dimensionality.” To address this exponential growth, tensor
decomposition methods (Tucker, Canonic Polyadic, CP, etc.) have been introduced
as a natural extension of matrix factorization, usually written in a so-called Sum-Of-
Products form (SOP). Arguably, one of the most widely used SOP form is the Tucker
form defined as below:
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where Cj, ;. , is a core tensor element and the U, terms are collectively re-
ferred to as factors. In the context of quantum dynamics, it was shown that the fac-
tors could be expressed analytically using a set of auxiliary functions collectively re-
ferred to as Finite Basis Representation (FBR). This simple idea has led to the X-FBR
(X=Tucker/SOP,[1] CP[2]], HT[3, 4]) family of analytical representation of common
tensor decomposition methods in the sum-of-products (SOP) form. Assume ¢ = {u}
a singleton, U, the factor matrix associated with node ¢, formally, a general represen-
tation of these basis functions can be written as a projection:
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Here, 0, denotes a projection operator that maps the n,-dimensional column vec-
tors of U, to a space of dimension N; + 1 spanned by a set of basis functions (e.g.
polynomials) defined over the domain €2;. The nature of these depends on the topol-
ogy of the problem.[1]] The operator o; is applied column-wise to the factor matrix
U, associated with the child nodes. The Tucker form in Eq. [I]in FBR representation,
therefore reads:
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In our previous works [3} 4, 5], we extended this FBR approach to accommodate
a hierarchical Tucker decomposition scheme, hence the name HT-FBR. Such an ap-



proach provides a recursive functional approximation to a multidimensional (binary)
tree structure. From a formal perspective, it can be expressed as:[3, 4} 5]
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Furthermore, we proposed an element-wise parallelization algorithm, demonstrat-
ing that HT-FBR can be reformulated in a chain-of-operators form. [5] This structure
allows us to optimize the entire process using a deep learning—inspired optimization
strategy.[S]

Although previous works successfully approximate high-dimensional functions us-
ing only a dimension-dependent number of sampled points, several challenges still
hinder further reduction of the loss in high-dimensional applications. First, the compu-
tational cost associated to the evaluation of increasingly high-dimensional functions.
As aresult, we are often forced to reduce the number of training epochs, which implic-
itly limits the ability to further optimize the model toward better solutions. Second, a
mild overfitting resulting from the combination of high-dimensionality and the limited
size of the training set, in spite of the model’s efficiency in capturing the underlying
structure. And third, limitations intrinsic to the use of a specific framework. Indeed,
relying solely on existing features of a framework is no longer sufficient to meet the
performance requirements of large-scale computation.

For all these reasons, a highly parallelized and customized algorithm that can fully
leverage the capabilities of modern high-performance GPUs becomes essential. In
this work, we present our approach to address these challenges. First, in section[2] we
briefly introduce the theory underlying the HT-FBR form and its optimization. Then,
in Section |3} we discuss the details of its implementation and outline our approach to
training with multiple GPUs. Finally in {4, we present our comparisons of our GPU-
based approach with CPU parallelization and some benchmarks.

2 Theory

A binary tree is a hierarchical data structure in which each node ¢ has at most two
child nodes and a single parent node. The leaf nodes, denoted by 7%, are those that
have no child node. The interior nodes, denoted by 7%, are nodes that have at least one
child and are not the root. In the original work of Hierarchical Tucker Decomposition
[6], the author used a Tucker Tree 77 as an extension of a binary tree in which each
node is associated with a subset of mode of dimensions, referred to as the node mode
denoted as t = {0,1,--- ,u < d— 1}. The node modes are recursively divided in a
left-major order from the root to the leaves, such that each split roughly halves the
parent’s node mode. Upper Fig. || illustrates a Tucker tree corresponding to a four-



dimensional tensor, or equivalently, a four-dimensional multivariate function in the
context of approximation of analytical functions in L?.
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Figure 1: Upper: Example of Hierarchical Tucker tree associated to 4D function.
Down: Chain rule format of HT-FBR.

In contrast to the original HTD approach that relies on the singular value decom-
position (SVD) of a dense and matricizable tensor, in HT-FBR we use a functional
schema as an analytical fitting of high-dimensional function without imposing any
prior knowledge or structural assumption.

First, let I, € L*(§,) be a set of coordinates in L?(£2,,) on the uth dimension of
the function f € L?(Q x - -+ X Q, X - - Qy_1), where ,, is defined as follows:

Q,ela, R b, eR] ped0,...,d—1} (7)

The combined coordinate set Z; to the node ¢ and its complete set Z, is shown
below:

It = XMEtI/L (8)
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We denote the factor associated with a leaf node ¢ as U, € R®%**t_ which consists
of the first k; orthogonal basis in L*(€);), typically initialized randomly. The term k,
1s often referred to ’node rank” at node ¢ as in HTD.

Let’s define ® an extension of the Kronecker product to L? space:
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Assume B, € RFxkr)xke ¢ ¢ Ty a so-called “transfer tensor” as trainable parame-
ter. Define an inner product < .,. > corresponded:
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With the operators and factor/transfer tensors defined above, we now describe the
leaves-to-root propagation using {User, Bthj}- Let U; and U, denote the factors
(basis functions in the leaf nodes), or resulting representations (logits) associated with
the two child nodes of an interior node ¢. Then, the truncation at node ¢ is defined as:
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Repeat Eq. |13|recursively from the leaf nodes to the root, we have the final repre-
sentation of an approximation of f4:
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We show the computation graph of a 4D sample in the down figure of [Il Such
structure forms a chain-of-operators, enabling a neural network—like optimization of
the transfer tensors B;. Given a batched input of coordinates Z and corresponding
label values f(Z), the truncated output f4(Z) by HT-FBR is evaluated using a loss
function. The resulting gradient is then propagated backward through the tree structure
to update B;.

3 Implementation and parallelized optimization

In [4]], we proposed a single-element passing rule that turns the evaluation of a HT-
FBR structure into an embarrasingly parallel process. [[4] In addition to this, an algo-
rithm for computing the analytical gradient of parameters has been introduced in [5]].



By integrating these two techniques, we have enabled GPU-based parallel forward and
backward propagation via a Torch Script. To this end, we adopt the Nuwa framework
from [7]] to manage task dependencies between nodes. To improve data loading effi-
ciency, we replace PyTorch’s default data pipeline with a customized implementation
using native Python code for both dataset creation and data loading process. However,
we still employ PyTorch’s sampler to perform randomized data sampling in the multi-
GPU training. In the followingwe will denote our implementation as "nuwa” while
the plain PyTorch implementation as “benchmark”.

We adopt the same all-reduced strategy as used in [8]. The HT-FBR model is ini-
tialized and replicated across multiple GPUs, with each replica maintaining identical
weights and hyperparameters. The training data is split into n mini-batches corre-
sponding to the number of GPUs and distributed accordingly. Each replica performs a
forward propagation on its local batch to compute logits, followed by a backward pass
where gradients are computed and averaged across all devices to ensure synchronized
updates usually referred to as Loosely synchronous parallelism. We present this DDP
workflow in Fig. 2] where n = 4.

replicated
GPU: 0| “Fodel grad, %

model

GPU: 1 replicated > grad,

. replicated
GPU: 2| " del > grad,

. replicated
GPU:3| | odel grad, '*

Figure 2: The DDP framework performs gradient reduction by averaging gradients
across all participating devices, after which the synchronized gradients are
used to update each replica of the distributed model.

4 Results and discussion

In this section, we present a comparative of the performance of various parallelization
strategies for HT-FBR, concerning their convergence properties, computation time,
and implementation efficiency compared to established benchmarks. To ensure con-



sistency and continuity with our previous works, we adopt the same dataset [9]] as in
[3][4] as benchmarks. In addition, we employ a 12-dimensional medium large Ethene
system to intuitively demonstrate the parallel capability of our implementation. All
CPU benchmarks were conducted using Python 3.10 and NumPy 1.26.4, with single-
node CPU parallelization achieved using Numba 0.60.0. For GPU benchmarks and
our implementation of the HT-FBR optimization, we used plain PyTorch 2.5.0 fea-
tures with CUDA 11.8 and GCC 11.2.0. The figures presented below were generated
using Matplotlib 3.9.2. The computations have been run on standard Ruche (local
cluster) GPU nodes with Intel Xeon Gold 6230 20C @ 2.1GHz and Nvidia Tesla
V100[10].

We adopted HONO PES dataset [9] as a proof-of-concept test that is widely adopted
as a benchmark. Its analytical expression is defined as:
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The reference cloud of points are sampled on the isometric grid shows in Table|[I]
The total number of the samplings is 1e6. During optimization, both training set and
test set consist of 10k randomly selected samplings. We use AdamW optimizer with
learning rate le-1 and decays with a rate of 0.5 every 1,000 epochs, its minimum is
set to be 1e-3. A full batch size is used during the training and k; (node rank) for each
node is set to be 10 except for the root is always be 1.

dim ny, Q,

0 10 [2.10, 3.25]

1 10 [1.30, 2.45]
2 10 [1.90, 2.60]
3 10 [-0.65, 0.25]
4 10 [-0.65, -0.10]
5 10 [0, 7]

Table 1: Grid sampling on 6D fyono. 10 coordinates are equally taken on each di-
mension /. inside the domain €2,

Fig 3| shows a comparison of the computation time required for our benchmark
on 1, 2, 4 and 8 GPUs for a total of 100k epochs.The 8 GPUs configuration used
two CPU nodes with each has 4 GPUs associated. We replaced Torch DataSet and
DatalLoader with our customized one, we used analytical gradient in the backward



instead of Torch Autograd. The other hyperparameters are kept identical in all the
experiments. As shown below, our implementation gets a factor of 10 speedup when
training on single GPU, it also achieves 5 times speedup on 8 GPUs when compared
to the benchmark. On the other hand, the addition of a second node did not yield a
significant improvement in computational efficiency.

27036
N nuwa

Benchmark

18486

10596 10614

Time (s) for 100k epochs

2843 2935 2683 2879

1 GPU 2 GPU 4 GPU 8 GPU

Figure 3: Comparison of computation time of nuwa and benchmark

Table 2| presents the results of models trained on both CPU and GPU. The CPU
implementation is parallelized using two commonly used Python packages: NumPy
and Numba, and it employs the Adam optimizer with an initial learning rate of le-1.
While training losses converged to the le-4 level across all configurations, the use
of DDP effectively mitigated overfitting, particularly when compared to training on
a single CPU or GPU. As a comparison, a direct decomposition of HT-FBR with the
same node ranks yields a global error of 7.5e-4 [3]].

HONO global fitting CPU and GPU
device framework | train loss test loss time
1 CPU nuwa 3.7e-4 7.2e-4 5h57m
1 GPU nuwa 6.1e-4 9.2¢-4 47m18s
1 GPU benchmark | 1.0e-3 1.3e-3 7h51m
2 GPU nuwa 1.1e-3 1.3e-3 48m54s
2 GPU benchmark | 4.9¢-4 6.4e-4 5h8m
4 GPU nuwa Se-4 6.0e-4 44md2s
4 GPU benchmark | 5.9e-4 6.3e-4 2h56m
8 GPU nuwa 5.3e-4 6.1e-4 47m58s
8 GPU benchmark | 5.7e-4 6.2e-4 2h56m

Table 2: Comparison of nuwa with benchmark training on 1, 2, 4 and 8 GPUs. Train-
ing with 4 and 8 GPUs exhibits more stable behavior compared to configura-
tions with fewer GPUs, with slightly reduced overfitting observed.



In addition, we assess the degree of overfitting by analyzing the gap between the
training and testing losses throughout the training process. We observed that this
absolute differences between the training and test losses are smaller when using four
or eight GPUs compared to using only one or two GPUs as shown in Tab.

Absolute difference training-test
GPU | nuwa benchmark
1 3.1e-4 3e-4
2 2e-4 1.5e-4
4 le-4 4e-5
8 8e-5 Se-5

Table 3: The absolute differences between the training and test losses

To further evaluate the scalability and effectiveness of our method, we conducted
the GPU optimization of a 12D HT-FBR model using a dataset consisting in 42,907
scattered data points. These have been generated in a series of Gaussian wavepacket
trajectories (in the electronic ground state of ethene) using the so-called Direct Dy-
namics Variational Multiconfiguration Gaussian method (DD-vMCG).[[11].

As shown in Table 4, GPU exhibit substantial performance improvement in terms
of loss and performance over CPU in processing high-dimensional and large-scale
datasets. Specifically, while a single CPU completed only 8,846 epochs in 70 hours,
nuwa with a single GPU was able to complete 100,000 epochs in 15 hours. Moreover,
this extended training led to a reduction in loss by an order of magnitude (le-3 to le-
4). Despite exceeding the 24-hour runtime limit, training with benchmark converged
to an equivalent level of accuracy as observed in shorter runs. Experiments with 2, 4,
and 8 GPUs yielded results consistent within the proof-of-concept case, where Nuwa
achieved an approximate 2x speedup. also presents the computation time required to
complete 100k epochs. Using the same total number of GPUs distributed across more
nodes does not improve performance on the benchmark, although a slight improve-
ment is observed for nuwa. On the other hand, with the dataset held constant, the
use of more GPUs facilitated convergence to marginally lower loss values, while the
overall training loss curve showed minimal variation.

Finally, a more detailed view of the training behavior is presented in Fig. 4. Nuwa
and the benchmark exhibit nearly identical performance. Moreover, increasing the
number of GPUs—while keeping the hyperparameter settings unchanged—does not
affect the convergence behavior during training.



12D Ethene fitting CPU and GPU
device framework | train loss epoch time
1 CPU nuwa 1.59e-3 8,846 70h
1 GPU nuwa 3.1e-4 100k 14h46m
1 GPU benchmark | 3.3e-4 88,999 24h
2 GPU nuwa 3.1e-4 100k 6h57m
2 GPU benchmark | 3.1e-4 100k 16h19m
4 GPU nuwa 2.8e-4 100k 4h30m
4 GPU benchmark | 2.9¢-4 100k 8h47m
8 GPU nuwa 2.8e-4 100k 4h
8 GPU benchmark | 2.9e-4 100k 8h39m

Table 4: Benchmark comparison of nuwa. The training loss remains in the same level
of accuracy for nuwa and benchmark. Training with either a single CPU or a
single GPU failed to reach 100k epochs within the time constraints imposed
by the computing cluster. An approximately 2x speedup is been observed on
4 and 8 GPUs by using nuwa.
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—— 2 GPU train —— 2 GPU train
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—— 8 GPU train / —— 8 GPU train
100 —— A o~ 10° LA a
b’* " ! f
@ Hﬁ‘ 2 10-14 \" LT
Al M 3 A

" y h
AL " LS

1074 \ 1073 4 k

107 T T T T T T 10 T T T T T T
10° 10t 10? 10° 104 10° 10° 10! 10?2 103 104 10°

Figure 4: Upper and down figure present the training loss curve using nuwa and
benchmark. Both of them exhibit same dynamic.

5 Conclusions

In this work, we have shown how HT-FBR analytical tree structures allow for Deep
Learning-inspired optimization schemes.The HT-FBR training routine has been im-
plemented in a multi-GPU environment. As main result, we have observed that the
use of more GPUs with Distributed Data Parallel (DDP) not only reduces the training
loss but also significantly mitigates overfitting. To further improve computational ef-
ficiency, we adopted two strategies that are (1) the use of analytical gradients during
backpropagation, and (2) a customized data pipeline that replaces PyTorch’s built-
in data loading mechanism. We observe a speedup ranging from 2x to 10x on both
the proof-of-concept and real-world datasets, while maintaining comparable levels of
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accuracy. As part of our future work, we plan to implement multi-GPU model paral-
lelism in conjunction with our current DDP approach to further reduce GPU memory
usage and enable testing on higher-dimensional multivariate functions.
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