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Abstract

In this article, we present an original method for mesh partitioning based on a multi-
level approach followed by a spectral method applied to the coarsened graph. Opposite
to other mesh partitioning algorithms based on spectral method, our approach takes
into account the number of nodes as a parameter in the coarsened graph, ensuring a
higher quality of the partitions. In the case of planar meshes, we prove some theoreti-
cal results of this new coarse spectral bisection method related to this partitioning. The
numerical experiments confirm the efficiency of this method on different test cases.

Keywords: finite element method, mesh partitioning, spectral method, planar graph,
parallel computing, domain decomposition.

1 Introduction

When considering large scale problems, parallel algorithms are mandatory both to
reduce the computational time of the simulation and also to ensure distributed data
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through the processors. Domain Decomposition methods are well suited for parallel
computations. Indeed, the division of a problem into smaller subproblems, through ar-
tificial subdivisions of the domain, is a mean for introducing parallelism [13] [12]. The
implementation of such methods on a parallel computer is strongly dependent of the
communications between the processors, which depend on the interface size between
the subdomains, which impacts the size of the array exchanged between the proces-
sors. The load-balancing between the subdomains impacts the computational time
spent to solve the local subproblems in each subdomain. When bad load balancing
appears, the latter point implies delay in the synchronization between the processors.
Opposite when using asynchronous domain decomposition methods, like the one con-
sidered in [8] [9] [5], bad load balancing is not an issue anymore. However, the time
to generate a good quality partitioning still remains important. Within the partitioning
algorithms, several approaches exist like [11], spectral methods [2], or hybrid meth-
ods [16] [6]. It is a well known that this kind of problem is NP-complete [1]. Thus,
this problem is mainly solved using heuristics such as the algorithms implemented
in JOSTLE [17], METIS, or HMETIS [11]. Coarsening methods have been used for
decades and were initially introduced because of the large dimension of the graph.
Most of the software like JOSTLE or METIS are based on coarsening approaches.

In this paper, we study an adapted spectral method for coarse graphs. The differ-
ence with [2] is that the method presented by the authors does not take into account
the way the graph is coarsened and mainly relies on using heuristics during the un-
coarsening procedure. Thus, we will encode the information at the coarsening level
and modify the spectral problem to solve. We do not have to apply heuristics in the un-
coarsening procedure. We will show that the coarse graph still respects some desirable
theoretical properties, and illustrates these properties in the numerical experiments.

2 Formalisation of the problem

We are given a meshM, issued for example, from a Delaunay triangulation process,
a common method to generate triangular meshes [3] [14].

Throughout this paper, we work with the dual graph of the finite element G =
(V,E) where E ⊂ V 2. It is an unweighted and non-directed graph. In the case of
2D meshes, the graph has an additional propriety : it is planar, i.e. the graph can be
plot in the 2D plane in such a way that no edges crosses. We will denote by n the
number of nodes in the graph and we will set ∆ ∈ N∗ being the maximal degree in the
graph, each node has a degree at most ∆. For P ⊂ V , we denote by |P | its cardinality
and by δ(P ) the set of edges having exactly one extremity in P . More formally it
can be defined as : δ(P ) = {(v, v′) ∈ E|v ∈ P, v′ ̸∈ P}. We extend the definition to
δ(P, P ′) = {(v, v′) ∈ E|v ∈ P, v′ ∈ P ′}, so that δ(P ) = δ(P, V \ P ).

There are metrics we would to minimize when we are given a graph to partition.
Let’s denote g ∈ N∗ the number of subdomains we aim to obtain and a partition
P1, P2, ..., Pg of V . The first two metrics defined below were first introduced in [7].
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Definition 1 (Interface Size). We define the Interface Size (IS) as the number of edges
cut between partitions :

IS(P1, P2, ..., Pg) =

g∑
k=1

|δ(Pk)|

Definition 2 (Load balancing). We define the Load Interface Balancing (LIB) which
represents the balance of the number of nodes in each partition as :

LIB(P1, ..., Pg) =

(
g∑

k=1

(
|Pk| −

n

g

)2
) 1

2

.

The quantity LIB tends to 0 when the partitions become perfectly balanced.

Definition 3 (Isoperimetric Ratio). We define the isoperimetric ratio (ϕG(P )) as the
ratio between the interface size and the number of nodes inside a partition as :

ϕG(P ) =
|δ(P )|

min(|P |, |V \ P |)

This will also be referred to as cut ratio. We define the Cheeger constant as :
h(G) = minS⊂V,|S|≤n/2ϕG(S) which is a common measure of the connectivity of a
graph. If this constant is high it means that the graph is difficult to partition.

3 Graph coarsening with edge matching

As mentioned in the introduction the problem of graph partitioning is NP-complete.
To overcome difficulties related to exponential running time, unless P=NP, we reduce
the size of the graph. We use a coarsening approach as it is done in METIS [11] or
JOSTLE [17], relying on several passes of matching edges : at each step, we contract
vertices to decrease the size of the graph. Algorithm 1 illustrates the complete process.

Algorithm 1 MatchingEdge(G, ncoarse)

Ensure: G is a graph, and ncoarse is the desired coarsening level
1: V ′ ← V , niter ← 0
2: while niter ̸= ncoarse do
3: Find a matching of edges: (v1, v2), . . . , (vk, vk+1)
4: V ′ ← Nodes formed by contraction of edges previously obtained
5: niter ← niter + 1
6: end while

We set G0 = G. At each iteration the algorithm constructs a new coarsened graph
Gk whose vertices are made of at most 2 nodes from Gk−1. To create Gk we do a
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matching of the edges of Gk−1, in other words, we choose a set of edges:
Ek = {(v1, v2), (v3, v4), . . . , (vm, vm+1)} in Gk−1 such that each vertex v of Gk−1

belongs to at most one edge in Ek. We construct this matching based on a random
procedure called Random Matching in METIS [11] or JOSTLE [17] which is the
naive way to construct a matching in a graph. At the end of the algorithm, we get a
final coarsened graph G′ := Gncoarse, whose vertices will be called metanode and can
be seen as a subset of vertices from the original graph G0. This final graph is also
called the metanode graph.

Once this step of coarsening is done we apply a spectral method to partition the
coarsened graph before decoarsening it to get the final partitioning. We will apply
the same procedure as done in [10] to perform the spectral clustering on the metan-
ode graph. Here we derive some properties of our metanode graph. A first property
concerns the connectivity of our metanodes.

Proposition 1. The metanode graph G′ is connected.

Proof. This proposition can be proven trivially by induction on the number of coarsifi-
cation steps we do. At each iteration, two neighboring nodes v1 and v2 are contracted.
As a result, the union of the sets of original nodes represented by v1 and v2 forms a
connected component in the original graph G.

In the rest of the paper we assume that the graph is planar, it means that we can
represent it on the plane and no edges will cross. Most of 2D meshes are planar this
justifies our assumption. Such planar graphs have very good properties we want to
keep on the final coarsened graph to prove theoretical results about spectral method.
We want to show that the metanode graph remains planar.

Proposition 2. The metanode graph G′ is planar.

Proof. Thanks to proposition 1, if we show that contracting an edge in a planar graph
keeps it planar we will have the result. This is a classic result, and the proof can be
found in [4]. In fact, we need this result to show Kuratowski’s theorem which states
that a graph is planar if and only if neither K5 nor K3,3 are minors of it.

4 Spectral method for mesh partitioning

4.1 Decomposition using spectral method

Now we review our optimization step using the spectral method. If we restrict our-
selves to the case of two subdomains, one associated to−1 and the other to +1, we can
search for a vector X {−1, 1}|V | that minimizes : L(X) = 1

4

∑
(i,j)∈E(Xi − Xj)

2 =
1
4
XTLX under the constraint ⟨X,1⟩ = 0. Here L is the Laplacian matrix of the graph.

In other words, we optimize the cut between the partitions under the constraint hav-
ing a load balanced cut. This is an integer quadratic problem and they are known to
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be NP-complete. We first optimize the problem on R|V | then see how can we return
to our original problem. Taking the Lagrangian multipliers we reduce to finding the
eigenvector v ∈ R|V | of L minimizing

minv⊥1⃗

vTLv

vTv

Once we find a solution v ∈ RV many methods exist to find the corresponding cut in
G. The general method is given using a common procedure called sweep. We look
for a threshold value s to help us to form our two partitions :

P1 = {x ∈ V |v(x) ≤ s}, P2 = {x ∈ V |v(x) > s}

Many ways to determine this threshold exist :

• Sign cut : The most intuitive one when seeing where we come from. We set
s = 0, so all v ∈ V having their corresponding entry in v positive will be put in
P1 and the others in P2.

• Ratio cut : We choose the value of s that gives the best ratio cut. Cheeger
inequality ensures finding a threshold s that gives a cut of ratio at most : h(G)2

2∆
.

• Bisection cut : Here we want to split the graph into two components of same
size, we set s as the median of the {v1, v2, . . . , vn}.

As stated in section 3, our case is different since we deal with a graph composed of
metanodes on which we have to take into account that many nodes form it.

Let’s introduce some notations about the metanode graph G′. We will denote G′ =
(V ′, E ′) the graph associated with its vertices and edges. We will let n′ be the number
of vertices in G′ which corresponds to the number of metanodes. For all vi ∈ V ′,
we denote di ∈ N∗ the number of nodes in the original graph forming it. Finally, we
denote by ∆meta the maximal degree in G′. Moreover, we associate a weight to the
edges between two metanodes being the number of edges crossing the two partitions :

∀(i, j) ∈ J1, n′K2, Ai,j = |δ(vi, vj)|

A is the adjacency matrix of G′, and we will let L′ = N − A be the Laplacian matrix
of the graph G′ where N is the diagonal matrix containing the weighted degree of the
vertices in G′ on its diagonal.

We will modify the original method, rather than looking for the second eigenvector
of L′, we will look for the second eigenvector of D−1/2L′D−1/2 as in [10]. Here the
D matrix contains the information of the number of nodes in each metanode, it will
appear naturally when doing the calculation. The reader used to this kind of literature
could say this is the definition of the normalized Laplacian, but here our D is the
diagonal matrix with the (di)i∈J1,nK on its diagonal, and not the degree of metanodes.

5



The metric we will aim to minimize in G′ is the following :

ϕG′(A′) =

∑
(vi,vj)∈E′(1vi∈A′ − 1vj∈A′)2Ai,j∑n′

i=1 1vi∈A′di
=

1T
A′L′1A′

1T
A′D1A′

Where we denoted for A′ ⊂ V ′,1vi∈A′ the vector with 1 in position v if v ∈ A and
0 otherwise. If we rewrite A = {x ∈ V |∃vi ∈ A′, st x ∈ vi}, we have ϕG′(A′) =
ϕG(A).

Now we present the difference between the classical spectral method and the weighted
one we use. Algorithm 2 presents the original version that acts on the original non-
modified graph.

Algorithm 2 Spectral Bisection

Require: Graph G = (V,E), n, bal. ∈ [0, 1]
1: N ← deg. matrix, A← adj. matrix
2: L← N − A, f ← 2nd eigvec of L
3: bRC ←∞, bP ← ∅
4: for t ∈

(
fi+fi+1

2

)n−1

i=1
do

5: S ← {i | fi ≤ t}, S̄ ← V \ S
6: if min(|S|, |S̄|) ≥ n

2
− bal. · n then ▷ To ensure the load balancing

7: c← ϕG(S)
8: if c < bRC then
9: bRC ← c, bP ← (S, S̄)

10: end if
11: end if
12: end for
13: return bP

Our modified version which does the spectral algorithm with weights, on the metan-
ode graph is presented in Algorithm 3.
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Algorithm 3 Spectral Bisection Weighted

Require: Graph G′ = (V ′, E ′), n′, bal. ∈ [0, 1]
1: N ← deg. matrix, A← adj. matrix, D = Diag(d1, d2, . . . , dn′)
2: Lmeta ← D−1/2(N − A)D−1/2, f ← 2nd eigvec of Lmeta

3: bRC ←∞, bP ← ∅
4: for t ∈

(
fi+fi+1

2

)n−1

i=1
do

5: S ← {i | fi ≤ t}, S̄ ← V ′ \ S
6: X ← 1S

7: if X⊤DX ∈ [n
2
± bal. · n] then ▷ To ensure the load balancing

8: c← ϕG′(S)
9: if c < bRC then

10: bRC ← c, bP ← (S, S̄)
11: end if
12: end if
13: end for
14: return bP

4.2 Analysis of the method

Let λ2 be the second smallest eigenvalue (0 is the first one) of Lmeta = D−1/2(N −
A)D−1/2, i.e. Lmeta = D−1/2L′D−1/2 where and D is the square diagonal matrix
with D(i, i) being the number of nodes contained in the metanode i. We suppose
our metanodes have size at most M . We can see the analogy between Lmeta and
the normalized Laplacian matrix. The following proof will be mainly based on the
fact that the second smallest eigenvalue of Lmeta verifies the same property than the
original Fiedler value. The other ingredient is already given by the analysis made by
Spielmann and Teng on the spectral methods in planar graphs [15]. Let’s reformulate
the classical theorems regarding Fiedler value in our case.

Proposition 3 (Cheeger inequality). There exists a set S ⊂ V ′ of metanodes1, such
that the ratio cut of S is upper bounded : ϕG′(S) ≤ ∆

√
2λ2M .

Proof. The classic Cheeger inequality [18] provides us S ⊂ V ′ verifying :

1T
SL

′1S

1T
SN1S

≤
√
2λ2M

M appears in the previous inequality thanks to Horn’s inequalities between the spec-
trum of L′ and Lmeta. Thus we have :

ϕG′(S) =
1T
SL

′1S

1T
SD1S

=
1T
SL

′1S

1T
SN1S

1T
SN1S

1T
SD1S

(1)

≤
√
2Mλ2maxi∈J1,n′K

ni

di
≤
√

2Mλ2maxi∈J1,n′K
ϕG(vi)di

di
≤ ∆

√
2Mλ2 (2)

1This subset is returned by spectral method we use.
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We will seek an upper bound to λ2 so that the ratio cut provided by the spectral
algorithm will also be upper bounded. We need the below lemma to obtain a different
expression for λ2, the second smallest eigenvalue of Lmeta.

Lemme 1. Let S ∈ Rn×n a symmetric positive matrix, such that S admits d ∈ Rn

as a kernel vector and dim(Ker S) = 1, then denoting λ2 ∈ R∗
+ its second smallest

eigenvalue (0 is the first one) we have :

∀k ∈ N∗, λ2 = minU∈Rn×k,UT d=0⃗

tr(UTSU)

tr(UTU)

Proof. We fix k ∈ N∗ and proceed by double inequality, first we deal with the in-
equality ≤. Let U ∈ Rn×k, and u1, u2, . . . , uk the columns of U.

tr(UTSU)

tr(UTU)
=

k∑
i=1

uT
i Sui∑k

i=1 ∥ui∥2
≥

k∑
i=1

λ2∥ui∥2∑k
i=1 ∥ui∥2

= λ2

The inequality is justified because ui is orthogonal to d and by the properties of sym-
metric positive matrices. Then, let v ∈ Rn be the eigenvector associated to λ2 and V
be the matrix whose k columns are all v. We have : V Td = 0⃗ and

λ2 =
k∑

i=1

λ2∥v∥2∑k
i=1 ∥v∥2

=
k∑

i=1

vTSv∑k
i=1 ∥v∥2

=
tr(V TSV )

tr(V TV )

which conclude the proof.

Let’s use an other definition of λ2 so that it will be easier to upper bound it. We will
denote (di)i∈J1,n′K ∈ Rn the vector containing in i−th position the number of nodes in
the i−th metanode. It verifies : D1⃗ = d.

Proposition 4. For all k ∈ N∗, λ2 the second smallest eigenvalue of Lmeta = D−1/2(N−
A)D−1/2 verifies :

λ2 = minv⃗1,...,v⃗n′∈Rk,
∑

div⃗i=0⃗

∑
(i,j)∈EG′ ∥v⃗i − v⃗j∥2Ai,j∑

i∈V ′ ∥v⃗i∥2di

Proof. The quantity we need to optimize can be written as :∑
(i,j)∈EG′ ∥v⃗i − v⃗j∥2Ai,j∑

i∈V ∥v⃗i∥2di
=

tr(V TL′V )

tr(V TDV )

where V ∈ Rn′×k is the matrix whose lines are the (v⃗i)i∈J1,n′K and thus verifies :
V Td = 0⃗. We make a change of variable U = D1/2V , so that we minimize :

tr(UTLmetaU)

tr(UTU)
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for U ∈ Rn′×k that verifies 0⃗ = UTD−1/2d = UTD−1/2D1⃗ = UTD1/21⃗. The lemma 2
justifies the first equality, and thus we have the result.

λ2 = minU∈Rn′×k,UTD1/21⃗=0⃗

tr(UTLmetaU)

tr(UTU)
(3)

= minV ∈Rn′×k,V T d=0⃗

tr(V TLV )

tr(V TDV )
(4)

= minv⃗1,...,v⃗n′∈Rk,
∑

div⃗i=0⃗

∑
(i,j)∈EG′ ∥v⃗i − v⃗j∥2Ai,j∑

i∈V ′ ∥v⃗i∥2di
(5)

Now let’s state the main result.

Proposition 5. We have λ2 ≤M 16∆
n

. We find by our spectral method a subset T ⊂ V ′

verifying ϕG′(T ) ≤M∆
√

32∆
n

.

To show this proposition we follow a similar approach of Spielmann and Teng
using Koebe’s theorem on planar graphs.

Theorem 1 (Koebe’s Theorem). Let G = (V, E) be a planar graph. Then there exists
a set of circles {C1, ..., Cn} in R2 that are interior disjoint such that circle Ci kisses
circle Cj if and only if (i, j) ∈ E.

This theorem will help us finding an embedding for our planar graphs that will
make naturally appear the vectors (vi)i∈J1,n′K of proposition 5. Here kisses can be
interpreted as touches, meaning that the two disks share exactly one point.

We start using the embedding the above theorem gives us, so we dispose of a plane
with disks on it representing the nodes. Then we will use the stereographic projection
onto the 3D sphere S2. Our original disks will be seen as caps onto this sphere. To each
of these caps we can then assign a center, cap Ci will be assigned to center v⃗i ∈ S2.
We denote by p the map that assigns to a cap its center, for example : p(Ci) = v⃗i. We
denote by BR3(0, 1) the unit centered ball in R3.

We follow the same steps as in [15] but in the general case where nodes have a
weight.

Proposition 6. There exists an embedding of the graph onto S2, such that each node
vi corresponds to a cap Ci that kisses an other cap Cj iff (vi, vj) ∈ E. Moreover, the
d−centroid of the cap’s center is 0⃗ :

1∑n′

i=1 di

n′∑
i=1

dip(Ci) = 0⃗

Proof. We consider a family of function defined by:

∀α⃗ ∈ BR3(0, 1), fα⃗ : S2 → S2 (6)

z 7→ πα⃗/∥α⃗∥(D
1−∥α⃗∥
α⃗/∥α⃗∥ (π

−1
α⃗/∥α⃗∥(z))) (7)
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where πα⃗/∥α⃗∥ is the stereographic projection from the plane tangent to S2 at α⃗/∥α⃗∥,
π−1
α⃗/∥α⃗∥ is its opposite function that maps a point of the sphere to a point into the plane

tangent to S2 in α⃗/∥α⃗∥. The image of a point z in the hyperplane tangent to S2 in
α⃗/∥α⃗∥ by πα⃗/∥α⃗∥ is defined as the intersection of the unit sphere and the line between
z and −α⃗/∥α⃗∥. We must be careful that π−1

α⃗/∥α⃗∥ is not defined everywhere since the
point −α⃗/∥α⃗∥ doesn’t have an image by πα⃗/∥α⃗∥. Moreover we define for α⃗ in the
sphere and β > 0, Dβ

α⃗ as the dilatation by a factor β of the plane tangent to the sphere
at α⃗. For α⃗ of norm 1, we extend the definition of fα⃗ to :

fα⃗(z) =

{
−α⃗ if z = −α⃗
α⃗ otherwise

These functions take a point onto the sphere and map it to the plane tangent to S2 in
α⃗/∥α⃗∥. Then a dilatation of this plane is done. After this the point is projected again
onto the sphere. One thing to notice is that the more ∥α⃗∥ gets close to 1, the closest
the caps will get to α⃗ after the transformation fα⃗.

An other thing to notice about this kind of function, when ∥α⃗∥ ≠ 1, is that they
map an interior-disjoint set of caps to an other interior-disjoint set of caps and caps
kiss in one set iff they kiss in the other. So if we can find α⃗ ∈ BR3(0, 1), verifying

n′∑
i=1

dip(fα⃗(Ci)) = 0⃗

the result will be given to us. We set for all i ∈ J1, n′K, d̄i = di∑n′
j=1 dj

and show the

equation above for the (d̄i)i∈J1,n′K which is a similar statement. To solve some issues
of non-continuity for the α⃗ in S2, we directly consider for ε > 0, and a cup C :

hε
α⃗(C) =

{
1 if dist(−α⃗, C) > ε,
dist(−α⃗,C)

ε
otherwise.

This function is designed to vanish when−α⃗ gets too much closer of the cap C. Some
issues of discontinuity can happen when −α⃗ gets into a cap without this term in the
next definition :

∀α⃗ ∈ B̄R3(0, 1), φε(α⃗) =
n∑

i=1

hε
α⃗(Ci)d̄ip(fα⃗(Ci)).

It is similar to the expression we seek to annihilate. It is a continuous application from
B̄R3(0, 1) to B̄R3(0, 1), thanks to the hε. Because we have at most 1 point shared by
two caps and since the graph has a finite number of nodes, we can choose ε sufficiently
small such that at most two caps are concerned by the kind of situation where hε

α⃗(C) ̸=
1. Since we know that our caps are interior disjoint and we suppose having at least
three metanodes, at least one term of the sum will be non null with value some diα⃗.
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Then we retrieve ourselves in the same case as in the original proof of [15], so that for
all α⃗ ∈ S2, φ(α⃗) belonged to the line between 0⃗ and α⃗, being closer to α⃗ than −α⃗.

As a consequence of Brouwer’s fixed point theorem we dispose of α⃗0
ε ∈ BR3(0, 1)

such that : φε(α⃗0
ε) = 0⃗. We want to show that α⃗0

ε can be taken inside the unit ball of
radius 1− ϵ so that all hε contributions equal 1.

We choose ε′ > 0 such that for all α⃗ of norm greater than 1 − ε′ we have at least
n′ − 2 caps (fα⃗(C1), fα⃗(C2), . . . , fα⃗(Cn′−2)) include in B(α⃗, ε′). It exists thanks to
the action of contraction of fα⃗.

Now we need one more assumption that differs from the original proof : ∀(i, j) ∈
J1, n′K2, di + dj < n/2. This is a reasonable assumption in the case of metanodes
graph, it means that two metanodes will never cover more than the half of the graph.
This assumption ensures us that for α⃗ of norm greater than 1−ε′ the expression doesn’t
annihilate. We then get the result by the previous discussion.

Now we dispose of an efficient embedding that will help us upper bounding the
fraction of Proposition 5.

Proof of Proposition 6. By the previous discussion, we dispose of an embedding of
the graph into the 3D-sphere S2 such that each node corresponds to the center of a
cup v⃗i. We denote ci the corresponding cup and its radius cup by ri. We choose the
embedding such that :

∑
div⃗i = 0⃗ as Proposition 7 provides us. We seek an upper

bound on the right quantity in Proposition 5.
Let’s deal with the numerator first :

∑
(i,j)∈EG′

∥v⃗i − v⃗j∥2Ai,j ≤ 2
n∑

i=1

n′∑
j=1

(r2i + r2j )Ai,j = 4
n′∑
i=1

r2i

n′∑
j=1

Ai,j

This is given by the fact that the distance between two vertices ∥v⃗i − v⃗j∥2 is at most
(ri + rj)

2, by a geometric argument. Moreover since cluster i have size di, we have :∑n′

j=1Ai,j ≤ ∆M . It is because
∑n

j=1Ai,j corresponds to the number of external
connections with metanode i and each node in G have at most ∆ neighbors.

Since the caps are interior disjoint and lies on the sphere, we have by comparing
surfaces :

∑n′

i=1 πr
2
i ≤ 4π. Finally,

∑
(i,j)∈EG′

∥v⃗i − v⃗j∥2Ai,j ≤ 4∆M

n′∑
i=1

r2i ≤ 16∆M

For the denumerator, since the (v⃗i)i∈J1,n′K’s lie on the unit sphere, we have

n′∑
i=1

∥v⃗i∥2di =
n′∑
i=1

di = n
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Graph nsubdoms Spectral Bisec. CSB 1 CSB 2 CSB 3 CSB 4 CSB 5
Cantilever Bean 2 20 20 22 26 26 26
Cantilever Bean 4 60 60 70 70 76 92
Cantilever Bean 8 140 142 156 180 212 282

Chamfer 5.3 2 96 94 102 110 116 132
Chamfer 5.3 4 268 292 308 326 348 390
Chamfer 5.3 8 538 566 576 654 730 706

Table 1: Interface Size (IS) between partitions.

We finally get thanks to Proposition 3, the inequality :

λ2 ≤
16∆M

n

Thanks to proposition 4: the spectral method gives a subset T of V ′ that verifies

ϕG′(T ) ≤M∆
√

32∆
n

.

5 Numerical experiments

In this section we compare the performances of our coarsening algorithm with the
original spectral recursive bisection algorithm. We seek to have almost load balance
partitions so we guarantee a minimum load balancing, choosing a threshold value of
our sweep procedure ensuring a 0.05 load balancing. We denote in the tables by CSB
the Coarse Spectral Bisection algorithm, with a number corresponding to the level of
coarsification done.

We consider two different test cases, namely a cantilever bean of size 10 × 100,
meshed with quadrangle elements, and a chamfered meshed with triangle elements.
Figure 1 shows an example of the partitioning obtained with the proposed method. Ta-
ble 1 and Table 2 shows the interface size and the load balancing ratio, confirming the
theoretical analysis of the proposed method. Table 3 shows the computational time,
which also confirm the faster execution of our method for the different geometries.

Figure 1: Partitioning of the Chamfer into four partitions (left) and sixteen partitions
(right).
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Graph nsubdoms Spectral Bisec. CSB 1 CSB 2 CSB 3 CSB 4 CSB 5
Cantilever Bean 2 1.00 1.04 1.04 1.17 1.03 1.04
Cantilever Bean 4 1.00 1.08 1.22 1.21 1.09 1.26
Cantilever Bean 8 1.08 1.13 1.36 1.22 1.29 1.27

Chamfer 5.3 2 1.04 1.16 1.17 1.17 1.18 1.20
Chamfer 5.3 4 1.04 1.22 1.21 1.25 1.20 1.24
Chamfer 5.3 8 1.06 1.36 1.46 1.29 1.43 1.42

Table 2: Ratio of the number of elements in the largest partition over the smallest one.

Graph nsubdoms Spectral Bisec. CSB 1 CSB 2 CSB 3 CSB 4 CSB 5
Cantilever Bean 2 0.92 0.59 0.62 0.65 0.65 0.70
Cantilever Bean 4 0.92 0.73 0.67 0.69 0.70 0.67
Cantilever Bean 8 1.00 0.72 0.71 0.74 0.74 0.69

Chamfer 5.3 2 649.00 140.34 76.73 63.68 61.62 61.00
Chamfer 5.3 4 980.00 178.40 85.70 65.40 63.80 62.50
Chamfer 5.3 8 887.67 240.00 105.00 66.00 62.00 64.00

Table 3: Computational time in seconds.

6 Concluding remarks

After proposing a new method for mesh partitioning and its associated algorithm, we
prove some theoretical properties in the case of planar meshes. The numerical experi-
ments confirm that, compared to the original spectral recursive method, our method is
always faster from a computational point of view, despite a small modification of the
load balancing. This property is mainly due to the vertex contraction occuring during
the matching edges process. Further investigations are under current analysis in order
to extend these results to non-planar meshes.
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