Proceedings of the Eighth International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering
Edited by: P. Ivanyi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 12, Paper 2.2
Civil-Comp Press, Edinburgh, United Kingdom, 2025
ISSN: 2753-3239, doi: 10.4203/ccc.12.2.2
©Civil-Comp Ltd, Edinburgh, UK, 2025

Parallel Application of Multi-Freedom
Constraints Using Master-Slave Method in
Sparse Linear Systems

C. Topal!, N. Muhtaroglu? and G. Kiziltas'

I Mechatronics Engineering, Sabanci University, Istanbul, Turkey
2 Computer Science, Ozyegin University, Istanbul, Turkey

Abstract

Multi-freedom constraints (MFCs) are commonly used in matrix formulations to en-
force dependencies among multiple components, particularly in structural analysis
where they are defined based on the degrees of freedom (DOFs) at nodes or compu-
tation points. A widely used approach for implementing MFCs is the master-slave
elimination method, favored for its simplicity and its ability to reduce the number
of unknowns. While straightforward to implement with full matrix storage, this ap-
proach can lead to increased memory usage. Conversely, applying it to sparse matrices
presents added complexity. This paper introduces a scalable and reusable implemen-
tation of the master-slave method tailored for large-scale linear systems with multi-
ple non-homogeneous constraints. The approach leverages parallel programming and
distributed processing to efficiently handle computational demands. PETSc 3.23.1 is
used as a tool for parallel computing due to its higher-level encapsulation of MPI op-
erations and built-in sparse matrix representation methods. The algorithm’s syntax is
designed for efficient memory handling. Parallel MPI library enables load balancing
across processors and threads.Benchmark results show that the proposed algorithm
speeds up process solving linear systems with multi-freedom constraints.

Keywords: linear equations, sparse matrices, multi-freedom constraints, MPI (mes-
sage passing interface), parallel computation, PETSc.

1 Introduction

Linear systems presented in numerical problems often rely on multiple constraints to
be solvable. A constraint condition is classified as a multi-freedom constraint (MFC)
when the constraint of one unknown is given in terms of the value of another un-
known in the linear system, rather than a constant, as in single-freedom constraints.
Although MFCs are applied in many areas over several disciplines including dynam-
ics [1], structural analysis [2], deep learning and finance, their use in mechanical stiff-
ness equations is more prominent than others.

MEFCs are often defined in canonical form as seen in (1), where all the unknowns
(in this case, u1, us, and ug) are gathered on the left-hand side of the equation:

auy + bus 4+ cug = g (1)

A multi-freedom constraint is classified as homogenous if the prescribed value g
on the right-hand side (called gap) is zero. Otherwise, it is called a non-homogenous
MEFC. The most general case for MFCs may include inequality instead of equality.
However, it is less frequent in linear structural analysis and more important in the
fields of control and optimization. MFC application is especially useful in enforc-
ing periodic boundary conditions, where the periodicity constraint is defined between
boundary points or nodes. Several methods for implementing MFCs exist that mainly

can be grouped as either in the first group which is the Penalty method [6], Lagrange
multipliers and their combination in form of the augmented and perturbed Lagrange
multipliers or the second group which includes the master-slave elimination method.
In the first group of methods, the finite element approach with constraints is mathemat-
ically formulated as a constrained optimization problem. A comprehensive overview
of multiplier techniques—including the Lagrange multiplier, augmented Lagrange
multiplier, and perturbed Lagrange multiplier — as well as the penalty method, is
provided in the textbook by Belytschko et al [5].

The master-slave elimination method is widely favored for its conceptual simplic-
ity and has been shown to provide improved accuracy in enforcing displacement con-
straints in structural analysis \cite{zheng}. However, the reduction of slave degrees
of freedom necessitates a reordering of the system equations, which can introduce
additional complexity when employing sparse matrix storage schemes. The compu-
tational efficiency of this method can be significantly enhanced through paralleliza-
tion. To address this need, in this study we present a generalized implementation of
the master-slave approach for applying non-homogeneous multi-freedom constraints
(MFCs) to large-scale linear systems. The method is evaluated quantitatively in terms
of computational performance and implementation efficiency. Although MFCs can be

applied to any linear equation system, for the sake of examples, stiffness equations
will be used in this study. This paper is structured as follows: first, an overview of
how MFCs are imposed on the system, and then a demonstration of the efficiency
of the proposed algorithm, via examples comparing results in terms of speedup, and
computation time, which are then analyzed with respect to the corresponding number
of processes and constraints.

Background: Imposing Multi-Freedom Constraints in a Nutshell

Here we summarize the basics of imposing multi-freedom constraints. Multi-freedom
constraints are imposed on a linear system by modifying the components of assembled
stiffness equations. This produces a modified linear system as follows:

Ku=fYX ga=f (2)

where K is the sparse stiffness matrix and u denotes the nodal constraints (e.g., dis-
placement values in structural analysis).

Alternative methods such as the Lagrange multiplier method add unknowns to rep-
resent constraint forces, while the penalty function method introduces weighted imag-
inary elements to impose constraints.

The master-slave method, unlike others, separates constraint elements into master
and slave categories, eliminating or modifying slave freedoms explicitly. This pro-
vides benefits in terms of spatial complexity and simplicity of implementation. A step
by step implementation flowchart of the master-slave elimination method is shown in
Figure 2.

Background: Master-Slave Elimination Method in a Nutshell

The master-slave elimination method in short uses a (usually sparse) transformation
matrix 7" to apply constraints by transforming the displacement vector v into a reduced
vector U, where slave freedoms are excluded:

u="Tu+g. 3)

The equation system then turns into the modified system described on the right-hand
side in Eq. (2), in which,

K=T"KT, f=T"(f-Ky). 4)

After solving the system, the eliminated slave freedoms can be recovered by simply
using Eq. (3), where g is the gap vector representing constraint offsets in the case of
non-homogeneous constraints. For homogeneous constraints, the gap vector is a zero
vector. More details of the method can be found in XXX.

Linear stiffness equation system
Ku=f

transformation matrix T

Implement MFCs and obtain
master-slave method

Modified stiffness equation
system Kii = f

Solve for i

Recover u using the
transformation matrix T
u="Ti

Figure 1: MFC application scheme

2 Proposed Methodology: Efficient Master-Slave Elim-
ination Algorithm

Since the standard master-slave elimination method reduces slave freedoms to form
a new “master”’ equation system, it can be disadvantageous in computer applications
because it requires rearrangement of the original equation system. The modified so-
lution vector « is a subset of the original solution vector u. Therefore, it is important
to systematically modify the transformation matrix 7" by storing the active row and
column indices. In the proposed parallel algorithm implementation, elements (DOFs)
in the constraint equations are stored in C++ objects called "Term”, which are then
assigned as either master or slave attributes within a constraint object.

The most important computational routine in constraint application is the genera-
tion of the transformation matrix 7. Initially, 7" is an identity matrix of size n X n,
where n is the number of active freedoms. Constraint objects, which include index
and coefficient data for slave and master freedoms, are parsed. The transformation
matrix is then reduced in column size by excluding the columns with the slave terms’
indices. Mapping between the original and reduced transformation matrix is estab-
lished, as this mapping information is required at later stages. For each master term
in the equation, the corresponding row of the master term is added onto the row posi-
tioned at the slave term’s index after factoring it with the ratio between the master and
slave term’s coefficients.

The gap value contained in the constraint objects are also stored in a gap vector

after being factored by the coefficient of the slave terms.

The final transformation matrix 7" is then used to modify both the right-hand side
vector [and the stiffness matrix K, as given in Eq. (4).

Although sparsity of the system improves performance, the algorithm requires dis-
tribution across computational units for large matrices.

The inputs to the algorithm are: constraint equations describing dependency among
DOFs (denoted by C), the stiffness matrix K, force (boundary condition) vector f,
and gap (constraint offset) vector g. The output is the nodal displacement vector u
that satisfies the modified system including the multi-freedom constraints.

To solve the system computationally, interdependent objects are designed and used,
such as for storing constraint equations.

While optimized matrix transposition and multiplication methods are already found
built in PETSc, parallelization focuses on generating the transformation matrix 7" and
solving the modified system. Generating the transformation matrix is especially costly
while working with very large systems, making constraint application process the bot-
tleneck when a large number of constraints are present.

- 9000

Create n-by-n Parse constraints & Caleulate K, T using
identity matrix T modify g and T equation (4)

Constraint Application

Solve linear system
Ki=f ford

Solver

Recover u using
equation (3)

OUTPUT: g

Figure 2: Proposed algorithm flowchart showing tasks & sub-tasks, all distributed among
available processes

3 Benchmark Tests via Proposed Algorithm

The proposed algorithm is designed in C++ programming language. The computation
time 1s aimed to be reduced using parallel processing. For this purpose, PETSc 3.23.1
is used as a high-performance computing toolkit for robust sparse matrix representa-
tion, as well as a higher-level wrapper for MPI (message passing interface) operations.
The algorithm’s syntax is designed for efficient memory handling. Parallel MPI library
enables load balancing across processors and threads.

Sparse matrices for the benchmark problem demonstration are taked from the Uni-
versity of Florida Sparse Matrix Collection. For testing, symmetrical square matrices
of structural origin are used in Matrix Market (.mtx) format. The benchmark problem
focuses on applying a set of linear constraints to a sparse stiffness matrix in paral-
lel using PETSc and solution of nodal displacement vector u. The stiffness matrix,
stored in Matrix Market (.mtx) format, represents a global linear system derived from
discretized physical models such as finite element meshes. Each constraint maps a
“slave” degree of freedom to a weighted sum of “master” degrees of freedom with
an optional constant gap. The constraints are generated randomly, subject to arbitrary
bounds.

The sparse matrices used in benchmark tests are chosen to vary significantly in size,
but not in sparsity ratio, to better observe the effect of size and constraint number on
the computation time. The computation time across varying number of total processes
are evaluated with respect to scalability using following metrics calculated for each
test.

T;
Sp:% s Ep:_ (5)
p

where T and T, is the computation time for 1 and p processes in order, S, is the
parallel speedup, and £, is the parallel efficiency. In the post-processing stage, these
metrics are compared with respect to the corresponding number of processes and con-
straints.

4 Results and Discussion

The sparse matrix-vector multiplication, i.e., solving the linear system, is efficiently
handled by PETSc. The time complexity of solving the modified system is optimally
bound by O(n), where n is the number of nonzero elements.

Results of two benchmark problems, namely Emilia_923 matrix and bmw7st_1 are
presented in terms of computation time for MFCs application vs. MPI processes, as
well as number of constraints in Figure 3 and Figure 4, respectively. Speedup achieve-
ments are presented in terms of surface plots in Figure 5 and Figure 6 for respective

benchmark problem. Overall, significant speedup values (as high as six fold) are ob-
served with large matrices (in the case of Emilia 923 and ~ 1 million DOF) and
increasing number of constraints (such as beyond 100000), while smaller problems
(smaller matrix of bmw7st_1 on the order of 140000) and less number of constraint

numbers exhibit less improvement in computation time with increasing number of
cores used.

Timing Analysis: Emilia_923

Constraint Time vs MPI Processes Constraint Time vs Constraints
b constraints procs
600 20000 600 1
40000 2
500 —e— 60000 500 3
o —e— 80000 e —e— 4
2 400 —e— 100000 | 2450 —e— 5
£ £ ——6
& 300 \ & 300
& o \ o\.—_. 8 200 -
— .
100 — 100 /
L . EEEES—
0 0 ne-e=e:
1 2 3 4 5 6 0 15000 30000 45000 60000 75000 90000
MPI Processes Number of Constraints

Figure 3: Proposed algorithm’s performance analysis for benchmark problem of Emilia_923
matrix (size: 923136 x 923136): Constraint time vs. MPI processes for different
number of constraints (left) and constraint time vs. number of constraints for
different number of processes

Timing Analysis: bmw7st_1

Constraint Time vs MPI Processes Constraint Time vs Constraints
° constraints procs.
200 20000 200 1
40000 2
—e— 60000 3
@ 150 —e— 80000 Z 150 —e— 4
@ —e— o —.—
2 -+— 100000 2 o— 5
= = —— 6
£ 100 £ 100
3 . 2
c g
& .. 5
8 \ \ 3
50 o 50
T \._.‘__. ;
TTT—— S
1 T T /.
0 0 e-s—e
1 2 3 4 5 6 0 15000 30000 45000 60000 75000 90000
MPI Processes Number of Constraints

Figure 4: Proposed algorithm’s performance analysis for benchmark problem of Emilia 923
matrix (size: 141347 x 141347): Constraint time vs. MPI processes for different
number of constraints (left) and constraint time vs. number of constraints for
different number of processes)

5 Conclusions and Future Work

In this work, we presented a parallel algorithm for solving linear equation systems
with imposed MFCs. Although scalability remains a challenge, the overhead caused

~ 15000
~ 30000
~ 45000
~ 60000 6“5\«\\5
~ 75000 oo™
“ < 90000

105000

Figure 5: Speedup values for varying constraint numbers and processor counts (Matrix Size:
923136 x 923136)

by the initialization and communication costs appear to be compensated by the dis-
tributed computation load. Therefore, the parallel implementation is proven to in-
crease computation efficiency. Since a single machine with 6 cores is used for the
performance comparison of the presented algorithm applied to two benchmark prob-
lems, the capability of this benchmark is yet to be increased to run tests for bigger
problems with the help of high-performance computing. These results thus serve as
proof-of-concept rather than the demonstration of a fully optimized parallel solution.

Execution times for constraint application have been benchmarked in parallel set-
tings. As expected, parallel implementation underperforms in smaller problems due
to MPI overhead but shows promise for scaling in larger settings.

Future plans include retesting benchmarks using even larger matrices and on high-
performance computing (HPC) clusters. In that case, the number of nodes inside the
cluster setting can also be evaluated as a parameter. Ultimately, better load balanc-
ing, memory distribution strategies, and communication handling can further improve
scalability and performance. Future runs on HPC machines will include multi-node
execution for broader validation. The code is available at: https://github.
com/open-lattice/solver.git

References

[1] J. J. Mufioz, G. Jeleni¢, and M. A. Crisfield, “Master—slave approach for the
modelling of joints with dependent degrees of freedom in flexible mechanisms,”
Communications in Numerical Methods in Engineering, vol. 19, pp. 689702,

7

’

7/

e 7

<
~ 15000
<~ 30000
~ 45000
~ 60000 6
~ 7000 oo
“XT 90000

105000

Figure 6: Speedup values for varying constraint numbers and processor counts (Matrix Size:
141347 x 141347)

Sep. 2003.
[2] J. A. Oliveira, J. Pinho-da-Cruz, A. Andrade-Campos, and F. Teixeira-Dias,

“Stress- and Strain-based MultiFreedom Constraints for Periodic Media Optimi-
sation,” 2nd International Conference on Engineering Optimization, Sep. 2010.

[3] Z. J. Zheng, S. Kulasegaram, P. Chen, and Y. Q. Chen, “An efficient SPH
methodology for modelling mechanical characteristics of particulate compos-
ites,” Defence Technology, vol. 17, pp. 135-146, Feb. 2021.

[4] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”
ACM Transactions on Mathematical Software, vol. 38, no. 1, pp. 1-25, Dec.
2011. DOI: https://doi.org/10.1145/2049662.2049663

[5] Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements
for continua and structures, 2nd edn. Wiley, Hoboken

[6] Boungard, J., Wackerful}, J. Master—slave elimination scheme for arbitrary
smooth nonlinear multi-point constraints. Comput Mech 74, 955-992 (2024).
https://doi.org/10.1007/s00466-024-02463-7

