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Abstract 
 

This paper presents Hyfeast, a high-performance finite element framework developed 

at the Korea Institute of Civil Engineering and Building Technology (KICT) to 

address the growing demands of advanced structural analysis in civil engineering. 

Hyfeast is built upon an object-oriented C++ class library (HFC) and consists of four 

standalone applications for structural analysis, visualization, and sectional evaluation. 

The framework supports a wide range of linear/nonlinear and static/dynamic 

simulations. In particular, it offers advanced capabilities for fluid–structure–soil 

interaction and digital twin–based analysis. By integrating OpenMP-based parallelism 

and high-performance numerical libraries such as Intel MKL and ARPACK, Hyfeast 

achieves superior computational performance. Validated through real-world 

applications including high-speed rail bridges and wastewater treatment facilities, 

Hyfeast proves to be a robust and extensible tool for structural engineers seeking 

scalable, customizable, and efficient simulation capabilities. 
 

Keywords: high-performance computing, finite element framework, structural 

simulation, object-oriented design, visualization, digital twin 
 

1  Introduction 
 

Modern civil infrastructure demands advanced simulation capabilities that combine 

computational efficiency with modeling flexibility. While commercial finite element 

(FE) software is widely used, it often lacks extensibility and customization. In 

particular, academic and government institutions face limitations in implementing 
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new elements, material models, or coupling schemes due to the closed nature of 

proprietary platforms. 

 

To bridge these gaps, Hyfeast has been developed as a fully in-house framework 

since 2008. It is designed with modularity, high performance, and adaptability in 

mind, supporting a broad range of engineering problems—from traditional linear 

static analysis to advanced fluid–structure–soil interaction (FSSI) and digital twin–

based implementations. 

 

2  Architecture and Key Features of Hyfeast Framework 
 

Hyfeast is built on the Hybrid Finite Element Class (HFC) library, written in C++ [1]. 

This object-oriented foundation enables modular extension and reuse across four 

primary executable components: hfAnalyzer, hfVisualizer, hfSectionAnalyzer, and 

hfSectionVisualizer, as shown in Figure 1. Among them, hfAnalyzer is the finite 

element solver, and hfVisualizer is its GUI-based pre-/postprocessor. 

hfSectionAnalyzer performs section property calculation and nonlinear section 

analysis, while hfSectionVisualizer serves as its GUI counterpart. hfAnalyzer and 

hfSectionAnalyzer operate via the command line, whereas hfVisualizer and 

hfSectionVisualizer are GUI applications. Data exchange between hfAnalyzer and 

hfVisualizer is managed through .hdb files, supporting both text and HDF5 formats. 

 

Hyfeast integrates several external libraries: Intel oneAPI MKL for matrix 

computations [2], ARPACK for eigenvalue analysis [3], Qt for GUI development [4], 

and VTK for scientific visualization [5]. In addition, a variety of other external 

libraries were utilized [6–13]. Its hybrid programming model combines object-

oriented design for extensibility with procedural routines optimized for performance-

critical tasks. Parallel execution is enabled via OpenMP. Among its core innovations 

are a flexible system-wide DOF architecture—supporting elements such as 5‑DOF 

shells—and robust constraint handling mechanisms, including multi-point constraints 

(MPCs) and automated elimination of over-constraints [1]. 

 

 
 

Figure 1: Framework architure of Hyfeast. 
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3  Analysis Capabilities, Elements, and Materials 
 

Hyfeast supports a wide range of analysis types required for structural simulations, 

including static and dynamic analyses, modal analysis, vehicle–bridge interaction, 

soil–structure and fluid–structure interactions, and digital twin implementations. 

Nonlinear solvers include Newton–Raphson, arc-length, BFGS, and line search 

algorithms. 

 

Hyfeast also offers a comprehensive library of finite elements: 

 

 Beam: B2D2H, B3D2H, B2D2MH, B3D2MH 

 Truss: T3D2, Cable 

 Shell: S3F, S4F, S3, S4, CS6, CS8 

 Solid: CPE3, CPE4, C3D8, … 

 Acoustic Solid: AC2D3, AC2D4, AC3D8, … 

 MCK Elements: PointMass, EarthSpring, Spring, MovingSpring 

 Etc: EmbeddedLine 

 

The full set of beam, shell, and solid elements available in Hyfeast is shown in Figure 

2. Except for MCK elements and EmbeddedLine, most element naming conventions 

in Hyfeast closely follow those of ABAQUS. B2D2H and B3D2H refer to 2D and 3D 

beam elements, respectively, while B2D2MH and B3D2MH are the corresponding 

Timoshenko beam elements. S3F and S4F are flat shell elements based on section 

force–strain constitutive laws, whereas S3 and S4 are general 3-node and 4-node shell 

elements. CS6 and CS8 are continuum shell elements. MITC and EAS techniques are 

employed to prevent locking in shell formulations. Solid elements prefixed with ‘C’ 

(e.g., CPE3) follow standard formulations. Elements beginning with ‘AC’ are 

designed for acoustic media, with pressure as the primary field variable. 

 

 
Figure 2: Beam, shell and solid elements. 
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Hyfeast particularly supports a diverse set of MCK elements. These include rigid 

arms, which are useful for modeling bridge bearings with vertical offsets. A notable 

element is the MovingSpring, which enables spring interactions over a predefined 

surface composed of beam, shell, or solid elements. This facilitates realistic vehicle–

bridge interaction modeling, as illustrated in Figure 3. 

 

 
 

Figure 3: MCK elements 

 

Hyfeast systematically supports 5-DOF shell elements at the system level through 

efficient DOF management [1]. As illustrated in Figure 4, fully formulated 5-DOF 

shell elements can be assembled into global models without requiring penalty-type 

rotational DOFs, which may otherwise degrade accuracy. 

 

 
 

Figure 4: Systematic suport on 5 DOFs shell elements [1]. 

 

Hyfeast supports various constraint types, including Support, RigidLink, 

BeamLink, MPC, NodeToSurface, DistributedSpring, ViscousBoundary, 

AcousticImpedance, and AcousticSolidInterface. It also includes internal mechanisms 

for detecting and resolving overconstraints, along with smart selection of slave DOFs 

for efficient simulation of complex models. Figure 5 illustrates a representative 
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overconstraint issue and common input errors associated with slave DOF selection 

[1]. 

 

 
Figure 5: Overconstraint issue and input error in transformation method [1]. 

 

 

Hyfeast accommodates various loading conditions, including Concentric, 

Displacement, Gravity, Temperature, SeismicRelative, FreeFieldSeismic, 

LineDistributed, LineMoving, SurfaceDistributed, and SurfaceMoving loads. Among 

these, LineMoving and SurfaceMoving loads are particularly effective for simulating 

time-dependent interactions. Figure 6 illustrates the application of these moving loads. 

LineMoving loads enable the simulation of moving forces along a set of connected 

beam elements, such as trains or vehicles traveling across a bridge. SurfaceMoving 

loads extend this capability to flat surfaces composed of shell or solid element faces, 

allowing directional loading to be applied smoothly along predefined paths. These 

features are crucial for influence surface analysis and dynamic safety evaluation of 

high-speed railway bridges under moving loads. It is worth noting that MovingSpring 

elements operate in a similar manner—not as loads, but as springs that move over a 

specified surface during the simulation. 

 

 

 
Figure 6: Moving loads. 

 

Hyfeast supports various constraint types, including Support, RigidLink, 

BeamLink, MPC, NodeToSurface, DistributedSpring, ViscousBoundary, 

AcousticImpedance, and AcousticSolidInterface. It also includes internal mechanisms 

for detecting and resolving overconstraints, along with smart selection of slave DOFs 

for efficient simulation of complex models. Figure 5 illustrates a representative 

overconstraint issue and common input errors associated with slave DOF selection 

[1]. 
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Hyfeast also supports a range of material models, as shown in Figure 7, including 

isotropic and orthotropic elasticity, von Mises, Tresca, and Drucker–Prager plasticity, 

as well as Menegotto–Pinto uniaxial models and uniaxial gap–hook models. 

 

Despite its extensive capabilities, current limitations of Hyfeast as a finite element 

platform include the lack of support for multi-axial concrete material models, 

geometric nonlinear analysis, contact analysis, and buckling analysis. 

 

 
Figure 7: Material models. 

 

4  Special Analysis Features 
 

Previous studies have shown that the dynamic behaviour of liquid storage tanks is 

strongly influenced by the fluid-structure-soil interaction, and this phenomenon has 

been observed in real earthquakes. Therefore, earthquake response analysis 

considering the fluid-structure-soil interaction is essential to ensure the seismic safety 

of liquid storage tanks. In particular, when a heavy structure such as a liquid storage 

tank rests on a flexible ground, nonlinear behaviour of the ground can occur and 

significantly affect the response of the whole system. One of the factors to be 

considered in the analysis of the soil-structure interaction is the energy radiation into 

the far-field region of the ground. Therefore, this study follows the procedure 

described in Section 2 to analyse the earthquake response of an unanchored liquid 

storage tank considering the nonlinear fluid-structure-soil interaction. 

 

4.1 FSSI Analysis Support 

 

Hyfeast provides dedicated support for Fluid-Structure-Soil Interaction (FSSI) 

analysis. The computational model is divided into Near Field and Far Field regions. 

The Near Field includes water, tank, and surrounding soil. Water is modeled using 

acoustic solid elements with AcousticImpedance boundary conditions applied at the 

free surface. The interface between the water and the tank structure is defined using 

AcousticSolidInterface elements. The tank structure itself is modeled with shell 

elements, while the soil in the Near Field is modeled using solid continuum elements. 



7 

 

The far field is handled using a simplified perfectly matched discrete layer (PMDL) 

approach. A midpoint integrated element and viscous damper are used to represent 

wave radiation and dissipate energy effectively. The effective seismic input for the 

FSSI model is derived from a preliminary free field analysis and applied at the 

interface between the near and far field regions. Currently, more advanced 

implementations—including the Domain Reduction Method (DRM) and rigorous 

formulations of PMDL and perfectly matched layers (PML)—are under development. 

 

 

 

 

 

 

 

 
Figure 8: FSSI model. 

 

 

 

 

 

 

4.2 Digital Twin Support Capabilities 

 

Hyfeast provides comprehensive functionality for digital twin applications. It includes 

a virtual sensor system capable of reporting strain, displacement, velocity, and 

acceleration at arbitrary locations—independent of mesh nodes. In addition, it 

supports advanced tasks such as model updating, shape estimation, and performance 

evaluation. As illustrated in Figure 9, these capabilities allow Hyfeast to be integrated 

into infrastructure monitoring, structural performance assessment, and predictive 

maintenance workflows [14]. 
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Figure 9: Digital twin for performance evalution of bridge [14]. 

 

5  Numerical Solvers and Parallel Performance 
 

Hyfeast leverages Intel oneAPI MKL for low-level matrix and vector operations. For 

solving sparse linear systems, it employs direct solvers such as PARDISO, as well as 

iterative solvers including BiCG, BiCGStab, and CGS. For eigenvalue problems, both 

ARPACK and Subspace Iteration methods are integrated, with PARDISO and 

ARPACK being the default choices. 

 

Parallelism via OpenMP is applied to element-level state updates and global matrix 

assembly, providing good scalability in multi-core environments. As shown in Figure 

10, a performance test of Hyfeast was conducted using up to 24 CPU cores. The results 

show near-linear speedup up to 16 cores; beyond that point, gains diminish due to 

thread contention and memory bandwidth limitations. The benchmark model was a 

dynamic simulation involving over one million degrees of freedom with 3D solid 

elements [15]. 

 

 
Figure 10: Scalability of Hyfeast with increasing CPU cores [15]. 
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Hyfeast also provides an iterative–direct sparse solver, particularly effective in 

scenarios where the system matrix evolves gradually and must be solved repeatedly. 

This solver is based on PARDISO, with modifications tailored for dynamic reuse. In 

the original PARDISO implementation, when solving a sequence of updated linear 

systems, the factorized matrix from a previous direct solution is reused as a 

preconditioner for a Krylov iterative solver. If the solution does not converge within 

a preset number of iterations, PARDISO falls back to a direct solver and reuses the 

new factorization result as the preconditioner for subsequent systems. Hyfeast 

enhances this approach by dynamically estimating the time cost of the first Krylov 

iteration and using it to adaptively set the maximum number of iterations. This 

adaptive strategy improves performance and has been validated in frequency-domain 

analyses. As shown in Figure 11, the proposed algorithm (Combination D) was tested 

on a cantilever beam model and compared with a baseline direct-only approach. The 

results demonstrate superior efficiency with the adaptive method [16]. Additional 

improvements to the algorithm are currently in progress, and its applicability to 

nonlinear analysis is under investigation. 

 

 
Figure 11: Iterative–direct sparse solver performance comparison [16]. 

 

 

6  Pre/Postprocessing with hfVisualizer 
 

Previous studies have shown that the dynamic behaviour of liquid storage tanks is  

hfVisualizer provides a comprehensive graphical user interface for 3D modeling, data 

editing, and result visualization. As shown in Figure 12, the interface integrates 

multiple modeling and postprocessing features: 

 

 Interactive GUI for geometric modeling (copy, extrude, divide) 

 Table-based entity management for nodes, elements, and boundary conditions 
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 Postprocessing tools including deformed shape visualization, 

contour/diagram/vector plots, and animation 

 Section view rendering for beam and shell elements, incorporating cross-sectional 

dimensions 

 Undo/redo functionality for interactive operations 

 Import/export capabilities for Hyfeast, ABAQUS, MIDAS, and GMSH file 

formats[17-20] 

 

 

 

Unlike general-purpose preprocessors that support full CAD-based modeling and 

meshing, hfAnalyzer does not provide geometric modeling or automatic mesh 

generation. Instead, similar to tools such as MIDAS Civil and MIDAS GEN, Hyfeast 

adopts a node-and-element definition strategy in which the mesh is constructed 

through direct manipulation of nodal coordinates and element connectivity. 

A notable feature recently added to hfVisualizer is its ability to reconstruct virtual 

displacement fields from dynamic pressure data obtained using acoustic solid 

elements. As illustrated in Figure 13, this feature enables intuitive visualization of 

internal fluid motion such as sloshing, and is particularly useful for analyzing 

hydrodynamic behavior in tanks or reservoirs. 

 

 

 

Additionally, hfVisualizer offers smooth import of structural models created with 

external tools. For instance, Figure 14 shows a model imported directly from MIDAS 

GEN, preserving node, element, and boundary condition definitions for immediate 

simulation within Hyfeast. 

 

 

 

 
Figure 12: UI layout of hfVisualizer. 
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Figure 13: Virtual fluid deformation visualization using acoustic pressure data. 

 

 
Figure 14: Model imported from MIDAS GEN. 

 

 

7  Sectional Analysis Tools 
 

Hyfeast includes dedicated tools for cross-sectional analysis. The hfSectionAnalyzer 

and hfSectionVisualizer compute geometric properties such as area, moment of 

inertia, torsional constant, and shear-related parameters for arbitrary cross-sectional 

shapes as shown in Figure 15. In particular, torsional constant and shear parameters 

are obtained via 2D finite element analysis. The tools also support nonlinear sectional 

response analyses using layered and fiber models, enabling the generation of 

moment–curvature relationships and axial force–moment (P–M) interaction diagrams. 
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To support arbitrary section modeling, hfSectionVisualizer provides a GUI for 

defining and editing section geometry, generating mesh, and visualizing stress and 

strain distributions. These tools are tightly integrated with hfAnalyzer and 

hfVisualizer, allowing seamless use of custom-defined sections in structural models. 

 

 

 

8  Conclusions 
 

Hyfeast is an extensible and high-performance finite element analysis platform 

suitable for both academic research and practical structural engineering applications. 

Its hybrid software architecture, parallel computing capabilities, and modular system 

design enable it to support a wide range of use cases—from high-speed railway 

dynamics to digital twin implementations. 

 

Future development will focus on expanding Hyfeast’s capabilities for architectural 

and civil structural design workflows, including code-based design verification. 

Additionally, geotechnical analysis features will be enhanced to support seepage 

modeling and coupled flow–stress simulations in porous media. Hyfeast will also 

introduce Python scripting support to enable customizable workflows. 

 

 

 
 

Figure 15: Section property computation and moment–curvature analysis using 

hfSectionAnalyzer and hfSectionVisualizer. 

 

 

Although initially developed as an internal in-house project, Hyfeast is scheduled 

for public release this summer as a free binary distribution, aiming to support broader 

adoption within the engineering community. 
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