
1

Abstract

This paper presents Hyfeast, a high-performance finite element framework developed

at the Korea Institute of Civil Engineering and Building Technology (KICT) to

address the growing demands of advanced structural analysis in civil engineering.

Hyfeast is built upon an object-oriented C++ class library (HFC) and consists of four

standalone applications for structural analysis, visualization, and sectional evaluation.

The framework supports a wide range of linear/nonlinear and static/dynamic

simulations. In particular, it offers advanced capabilities for fluid–structure–soil

interaction and digital twin–based analysis. By integrating OpenMP-based parallelism

and high-performance numerical libraries such as Intel MKL and ARPACK, Hyfeast

achieves superior computational performance. Validated through real-world

applications including high-speed rail bridges and wastewater treatment facilities,

Hyfeast proves to be a robust and extensible tool for structural engineers seeking

scalable, customizable, and efficient simulation capabilities.

Keywords: high-performance computing, finite element framework, structural

simulation, object-oriented design, visualization, digital twin

1 Introduction

Modern civil infrastructure demands advanced simulation capabilities that combine

computational efficiency with modeling flexibility. While commercial finite element

(FE) software is widely used, it often lacks extensibility and customization. In

particular, academic and government institutions face limitations in implementing

Hyfeast: A Parallel Finite Element Framework for

Advanced Civil Engineering Applications

J.-R. Cho1, K. Cho1, J. H. Lee2 and D. S. Rhee3

1Department of Structural Engineering Research, Korea Institute of Civil

Engineerng and Building Technology, Goyang, Republic of Korea
2Department of Ocean Engineering, Pukyong National University, Busan,

Republic of Korea
3Department of Hydro Science and Engineering Research, Korea Institute

of Civil Engineerng and Building Technology, Goyang, Republic of Korea

Proceedings of the Eighth International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 12, Paper 2.1

Civil-Comp Press, Edinburgh, United Kingdom, 2025
ISSN: 2753-3239, doi: 10.4203/ccc.12.2.1

©Civil-Comp Ltd, Edinburgh, UK, 2025

2

new elements, material models, or coupling schemes due to the closed nature of

proprietary platforms.

To bridge these gaps, Hyfeast has been developed as a fully in-house framework

since 2008. It is designed with modularity, high performance, and adaptability in

mind, supporting a broad range of engineering problems—from traditional linear

static analysis to advanced fluid–structure–soil interaction (FSSI) and digital twin–

based implementations.

2 Architecture and Key Features of Hyfeast Framework

Hyfeast is built on the Hybrid Finite Element Class (HFC) library, written in C++ [1].

This object-oriented foundation enables modular extension and reuse across four

primary executable components: hfAnalyzer, hfVisualizer, hfSectionAnalyzer, and

hfSectionVisualizer, as shown in Figure 1. Among them, hfAnalyzer is the finite

element solver, and hfVisualizer is its GUI-based pre-/postprocessor.

hfSectionAnalyzer performs section property calculation and nonlinear section

analysis, while hfSectionVisualizer serves as its GUI counterpart. hfAnalyzer and

hfSectionAnalyzer operate via the command line, whereas hfVisualizer and

hfSectionVisualizer are GUI applications. Data exchange between hfAnalyzer and

hfVisualizer is managed through .hdb files, supporting both text and HDF5 formats.

Hyfeast integrates several external libraries: Intel oneAPI MKL for matrix

computations [2], ARPACK for eigenvalue analysis [3], Qt for GUI development [4],

and VTK for scientific visualization [5]. In addition, a variety of other external

libraries were utilized [6–13]. Its hybrid programming model combines object-

oriented design for extensibility with procedural routines optimized for performance-

critical tasks. Parallel execution is enabled via OpenMP. Among its core innovations

are a flexible system-wide DOF architecture—supporting elements such as 5‑DOF

shells—and robust constraint handling mechanisms, including multi-point constraints

(MPCs) and automated elimination of over-constraints [1].

Figure 1: Framework architure of Hyfeast.

3

3 Analysis Capabilities, Elements, and Materials

Hyfeast supports a wide range of analysis types required for structural simulations,

including static and dynamic analyses, modal analysis, vehicle–bridge interaction,

soil–structure and fluid–structure interactions, and digital twin implementations.

Nonlinear solvers include Newton–Raphson, arc-length, BFGS, and line search

algorithms.

Hyfeast also offers a comprehensive library of finite elements:

 Beam: B2D2H, B3D2H, B2D2MH, B3D2MH

 Truss: T3D2, Cable

 Shell: S3F, S4F, S3, S4, CS6, CS8

 Solid: CPE3, CPE4, C3D8, …

 Acoustic Solid: AC2D3, AC2D4, AC3D8, …

 MCK Elements: PointMass, EarthSpring, Spring, MovingSpring

 Etc: EmbeddedLine

The full set of beam, shell, and solid elements available in Hyfeast is shown in Figure

2. Except for MCK elements and EmbeddedLine, most element naming conventions

in Hyfeast closely follow those of ABAQUS. B2D2H and B3D2H refer to 2D and 3D

beam elements, respectively, while B2D2MH and B3D2MH are the corresponding

Timoshenko beam elements. S3F and S4F are flat shell elements based on section

force–strain constitutive laws, whereas S3 and S4 are general 3-node and 4-node shell

elements. CS6 and CS8 are continuum shell elements. MITC and EAS techniques are

employed to prevent locking in shell formulations. Solid elements prefixed with ‘C’

(e.g., CPE3) follow standard formulations. Elements beginning with ‘AC’ are

designed for acoustic media, with pressure as the primary field variable.

Figure 2: Beam, shell and solid elements.

4

Hyfeast particularly supports a diverse set of MCK elements. These include rigid

arms, which are useful for modeling bridge bearings with vertical offsets. A notable

element is the MovingSpring, which enables spring interactions over a predefined

surface composed of beam, shell, or solid elements. This facilitates realistic vehicle–

bridge interaction modeling, as illustrated in Figure 3.

Figure 3: MCK elements

Hyfeast systematically supports 5-DOF shell elements at the system level through

efficient DOF management [1]. As illustrated in Figure 4, fully formulated 5-DOF

shell elements can be assembled into global models without requiring penalty-type

rotational DOFs, which may otherwise degrade accuracy.

Figure 4: Systematic suport on 5 DOFs shell elements [1].

Hyfeast supports various constraint types, including Support, RigidLink,

BeamLink, MPC, NodeToSurface, DistributedSpring, ViscousBoundary,

AcousticImpedance, and AcousticSolidInterface. It also includes internal mechanisms

for detecting and resolving overconstraints, along with smart selection of slave DOFs

for efficient simulation of complex models. Figure 5 illustrates a representative

5

overconstraint issue and common input errors associated with slave DOF selection

[1].

Figure 5: Overconstraint issue and input error in transformation method [1].

Hyfeast accommodates various loading conditions, including Concentric,

Displacement, Gravity, Temperature, SeismicRelative, FreeFieldSeismic,

LineDistributed, LineMoving, SurfaceDistributed, and SurfaceMoving loads. Among

these, LineMoving and SurfaceMoving loads are particularly effective for simulating

time-dependent interactions. Figure 6 illustrates the application of these moving loads.

LineMoving loads enable the simulation of moving forces along a set of connected

beam elements, such as trains or vehicles traveling across a bridge. SurfaceMoving

loads extend this capability to flat surfaces composed of shell or solid element faces,

allowing directional loading to be applied smoothly along predefined paths. These

features are crucial for influence surface analysis and dynamic safety evaluation of

high-speed railway bridges under moving loads. It is worth noting that MovingSpring

elements operate in a similar manner—not as loads, but as springs that move over a

specified surface during the simulation.

Figure 6: Moving loads.

Hyfeast supports various constraint types, including Support, RigidLink,

BeamLink, MPC, NodeToSurface, DistributedSpring, ViscousBoundary,

AcousticImpedance, and AcousticSolidInterface. It also includes internal mechanisms

for detecting and resolving overconstraints, along with smart selection of slave DOFs

for efficient simulation of complex models. Figure 5 illustrates a representative

overconstraint issue and common input errors associated with slave DOF selection

[1].

6

Hyfeast also supports a range of material models, as shown in Figure 7, including

isotropic and orthotropic elasticity, von Mises, Tresca, and Drucker–Prager plasticity,

as well as Menegotto–Pinto uniaxial models and uniaxial gap–hook models.

Despite its extensive capabilities, current limitations of Hyfeast as a finite element

platform include the lack of support for multi-axial concrete material models,

geometric nonlinear analysis, contact analysis, and buckling analysis.

Figure 7: Material models.

4 Special Analysis Features

Previous studies have shown that the dynamic behaviour of liquid storage tanks is

strongly influenced by the fluid-structure-soil interaction, and this phenomenon has

been observed in real earthquakes. Therefore, earthquake response analysis

considering the fluid-structure-soil interaction is essential to ensure the seismic safety

of liquid storage tanks. In particular, when a heavy structure such as a liquid storage

tank rests on a flexible ground, nonlinear behaviour of the ground can occur and

significantly affect the response of the whole system. One of the factors to be

considered in the analysis of the soil-structure interaction is the energy radiation into

the far-field region of the ground. Therefore, this study follows the procedure

described in Section 2 to analyse the earthquake response of an unanchored liquid

storage tank considering the nonlinear fluid-structure-soil interaction.

4.1 FSSI Analysis Support

Hyfeast provides dedicated support for Fluid-Structure-Soil Interaction (FSSI)

analysis. The computational model is divided into Near Field and Far Field regions.

The Near Field includes water, tank, and surrounding soil. Water is modeled using

acoustic solid elements with AcousticImpedance boundary conditions applied at the

free surface. The interface between the water and the tank structure is defined using

AcousticSolidInterface elements. The tank structure itself is modeled with shell

elements, while the soil in the Near Field is modeled using solid continuum elements.

7

The far field is handled using a simplified perfectly matched discrete layer (PMDL)

approach. A midpoint integrated element and viscous damper are used to represent

wave radiation and dissipate energy effectively. The effective seismic input for the

FSSI model is derived from a preliminary free field analysis and applied at the

interface between the near and far field regions. Currently, more advanced

implementations—including the Domain Reduction Method (DRM) and rigorous

formulations of PMDL and perfectly matched layers (PML)—are under development.

Figure 8: FSSI model.

4.2 Digital Twin Support Capabilities

Hyfeast provides comprehensive functionality for digital twin applications. It includes

a virtual sensor system capable of reporting strain, displacement, velocity, and

acceleration at arbitrary locations—independent of mesh nodes. In addition, it

supports advanced tasks such as model updating, shape estimation, and performance

evaluation. As illustrated in Figure 9, these capabilities allow Hyfeast to be integrated

into infrastructure monitoring, structural performance assessment, and predictive

maintenance workflows [14].

8

Figure 9: Digital twin for performance evalution of bridge [14].

5 Numerical Solvers and Parallel Performance

Hyfeast leverages Intel oneAPI MKL for low-level matrix and vector operations. For

solving sparse linear systems, it employs direct solvers such as PARDISO, as well as

iterative solvers including BiCG, BiCGStab, and CGS. For eigenvalue problems, both

ARPACK and Subspace Iteration methods are integrated, with PARDISO and

ARPACK being the default choices.

Parallelism via OpenMP is applied to element-level state updates and global matrix

assembly, providing good scalability in multi-core environments. As shown in Figure

10, a performance test of Hyfeast was conducted using up to 24 CPU cores. The results

show near-linear speedup up to 16 cores; beyond that point, gains diminish due to

thread contention and memory bandwidth limitations. The benchmark model was a

dynamic simulation involving over one million degrees of freedom with 3D solid

elements [15].

Figure 10: Scalability of Hyfeast with increasing CPU cores [15].

9

Hyfeast also provides an iterative–direct sparse solver, particularly effective in

scenarios where the system matrix evolves gradually and must be solved repeatedly.

This solver is based on PARDISO, with modifications tailored for dynamic reuse. In

the original PARDISO implementation, when solving a sequence of updated linear

systems, the factorized matrix from a previous direct solution is reused as a

preconditioner for a Krylov iterative solver. If the solution does not converge within

a preset number of iterations, PARDISO falls back to a direct solver and reuses the

new factorization result as the preconditioner for subsequent systems. Hyfeast

enhances this approach by dynamically estimating the time cost of the first Krylov

iteration and using it to adaptively set the maximum number of iterations. This

adaptive strategy improves performance and has been validated in frequency-domain

analyses. As shown in Figure 11, the proposed algorithm (Combination D) was tested

on a cantilever beam model and compared with a baseline direct-only approach. The

results demonstrate superior efficiency with the adaptive method [16]. Additional

improvements to the algorithm are currently in progress, and its applicability to

nonlinear analysis is under investigation.

Figure 11: Iterative–direct sparse solver performance comparison [16].

6 Pre/Postprocessing with hfVisualizer

Previous studies have shown that the dynamic behaviour of liquid storage tanks is

hfVisualizer provides a comprehensive graphical user interface for 3D modeling, data

editing, and result visualization. As shown in Figure 12, the interface integrates

multiple modeling and postprocessing features:

 Interactive GUI for geometric modeling (copy, extrude, divide)

 Table-based entity management for nodes, elements, and boundary conditions

10

 Postprocessing tools including deformed shape visualization,

contour/diagram/vector plots, and animation

 Section view rendering for beam and shell elements, incorporating cross-sectional

dimensions

 Undo/redo functionality for interactive operations

 Import/export capabilities for Hyfeast, ABAQUS, MIDAS, and GMSH file

formats[17-20]

Unlike general-purpose preprocessors that support full CAD-based modeling and

meshing, hfAnalyzer does not provide geometric modeling or automatic mesh

generation. Instead, similar to tools such as MIDAS Civil and MIDAS GEN, Hyfeast

adopts a node-and-element definition strategy in which the mesh is constructed

through direct manipulation of nodal coordinates and element connectivity.

A notable feature recently added to hfVisualizer is its ability to reconstruct virtual

displacement fields from dynamic pressure data obtained using acoustic solid

elements. As illustrated in Figure 13, this feature enables intuitive visualization of

internal fluid motion such as sloshing, and is particularly useful for analyzing

hydrodynamic behavior in tanks or reservoirs.

Additionally, hfVisualizer offers smooth import of structural models created with

external tools. For instance, Figure 14 shows a model imported directly from MIDAS

GEN, preserving node, element, and boundary condition definitions for immediate

simulation within Hyfeast.

Figure 12: UI layout of hfVisualizer.

11

Figure 13: Virtual fluid deformation visualization using acoustic pressure data.

Figure 14: Model imported from MIDAS GEN.

7 Sectional Analysis Tools

Hyfeast includes dedicated tools for cross-sectional analysis. The hfSectionAnalyzer

and hfSectionVisualizer compute geometric properties such as area, moment of

inertia, torsional constant, and shear-related parameters for arbitrary cross-sectional

shapes as shown in Figure 15. In particular, torsional constant and shear parameters

are obtained via 2D finite element analysis. The tools also support nonlinear sectional

response analyses using layered and fiber models, enabling the generation of

moment–curvature relationships and axial force–moment (P–M) interaction diagrams.

12

To support arbitrary section modeling, hfSectionVisualizer provides a GUI for

defining and editing section geometry, generating mesh, and visualizing stress and

strain distributions. These tools are tightly integrated with hfAnalyzer and

hfVisualizer, allowing seamless use of custom-defined sections in structural models.

8 Conclusions

Hyfeast is an extensible and high-performance finite element analysis platform

suitable for both academic research and practical structural engineering applications.

Its hybrid software architecture, parallel computing capabilities, and modular system

design enable it to support a wide range of use cases—from high-speed railway

dynamics to digital twin implementations.

Future development will focus on expanding Hyfeast’s capabilities for architectural

and civil structural design workflows, including code-based design verification.

Additionally, geotechnical analysis features will be enhanced to support seepage

modeling and coupled flow–stress simulations in porous media. Hyfeast will also

introduce Python scripting support to enable customizable workflows.

Figure 15: Section property computation and moment–curvature analysis using

hfSectionAnalyzer and hfSectionVisualizer.

Although initially developed as an internal in-house project, Hyfeast is scheduled

for public release this summer as a free binary distribution, aiming to support broader

adoption within the engineering community.

13

Acknowledgements

This work is financially supported by Korea Ministry of Environment(MOE) as 「
Technology development project to optimize planning, operation, and maintenance of

urban flood control facilities)(RS-2024-00397821) 」.

References

[1] Cho, J.-R., Object‑oriented Finite Element Framework Using Hybrid

Programming, Ph.D. Dissertation, Seoul National University, Seoul, Republic

of Korea, 2009.

[2] Intel Math Kernel Library (MKL) Documentation, Intel Corporation, available

at https://www.intel.com/content/www/us/en/docs/onemkl/ (accessed April

2025).

[3] ARPACK Users’ Guide, Rice University CAAM, available at

https://www.caam.rice.edu/software/ARPACK/ (accessed April 2025).

[4] The Qt Company, Qt 5.12.2 – patch release of Qt 5.12 LTS, released March 15

2019, available at https://www.qt.io (accessed April 2025).

[5] VTK – Visualization Toolkit, available at https://vtk.org/ (accessed April 2025).

[6] Eigen Library, available at https://eigen.tuxfamily.org/ (accessed April 2025).

[7] The HDF Group, HDF5 Reference Manual, Version 1.10…, available at

https://support.hdfgroup.org/documentation/hdf5/latest/ (accessed April 2025).

[8] Schöberl, J., “NETGEN: An advancing front 2D/3D‑mesh generator based on

abstract rules,” Computing and Visualization in Science, vol. 1, pp. 41–52, July

1997. doi:10.1007/s007910050004

[9] tfussell, “xlnt: a modern C++ library for manipulating spreadsheets,” GitHub

repository, first public release May 10 2017, available at

https://github.com/tfussell/xlnt (accessed April 2025).

[10] Yip, M., RapidJSON: A fast JSON parser/generator for C++, Tencent, header-

only, available at https://rapidjson.org/ (accessed April 2025).

[11] Kriege, J., JKQtPlotter: A Qt plotting library for Qt5/Qt6, LGPL‑2.1+, GitHub

Pages, available at https://jkriege2.github.io/JKQtPlotter (accessed April 2025).

[12] Pandoc User’s Guide and API Manual, available at https://pandoc.org (accessed

April 2025).

[13] mozman, ezdxf 1.4.2, Python package for DXF creation/manipulation (MIT

License), available at https://ezdxf.readthedocs.io/ (accessed April 2025).

[14] Cho, K. and Cho, J.-R., “Stochastic Subspace Identification‑based Automated

Operational Modal Analysis Considering Modal Uncertainty,” Applied

Sciences, vol. 13, no. 22, Article 12274, 2023. doi:10.3390/app132212274

[15] Cho, J.-R. and Cho, K.-H., “Design Considerations on Large‑scale Parallel

Finite Element Code in Shared Memory Architecture with Multi‑Core CPU,”

Journal of the Computational Structural Engineering Institute of Korea, vol. 30,

no. 2, pp. 127–135, April 2017. doi:10.7734/COSEIK.2017.30.2.127

[16] Cho, J.-R. and Cho, K.-H., “Computational Efficiency of Frequency‑Domain

Analysis of Large‑Scale Finite‑Element Models Using an Iterative–Direct

Sparse Solver Combination,” Journal of the Computational Structural

14

Engineering Institute of Korea, vol. 32, no. 2, pp. 117–124, 2019.

doi:10.7734/COSEIK.2019.32.2.117

[17] Dassault Systèmes Simulia Corp., "Abaqus FEA," available at

https://en.wikipedia.org/wiki/Abaqus (accessed April 2025).

[18] MIDAS Information Technology, "Midas Civil 2020 v. 3.1 Release," available

at https://www.midasoft.com/bridge-library/civil/products/midascivil (accessed

April 2025).

[19] MIDAS Information Technology, "Midas GEN – Features," available at

https://www.midasuser.com/en/product/gen/features (accessed April 2025).

[20] Geuzaine, C. and Remacle, J.-F., "Gmsh: A 3-D finite element mesh generator

with built-in pre- and post-processing facilities," International Journal for

Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

doi:10.1002/nme.2579

