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Abstract

Topology optimization has gained renewed attention thanks to the improvement of
3D printing techniques, especially for metals. While it is currently mainly limited to
small-scale production and non-critical components, improvements in printing qual-
ity and mass production will make topology optimization a key engineering design
technology for enhancing products. However, designing components through topol-
ogy optimization is computationally expensive, as many finite element simulations
are required. This is particularly important when performing inverse analysis. The
purpose of this paper is to explore the use of deep rank-reduction autoencoders to ac-
celerate both the forward and the inverse topology optimization schemes, solving also
the well-known ill-posedness of the inverse problem.
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1 Introduction

Topology optimization is a mathematical approach to pursue the best distribution of
material within a design domain to obtain a target mechanical property (e.g. minimum
compliance) with minimum material [1, 2]. This technique is especially useful in the
design of mechanical metamaterials, and in particular may be used in the design of
functionally graded metamaterials. Topology optimization (TO) typically requires
the search for a finite element solution for every topology iteration. For the case
of metamaterial-made structures, this implies a topology design at two levels, the
component level and the metamaterial level. Therefore, the computational cost is high,
especially for large multiscale structures and nonlinear material behavior [3]. Current
machine learning approaches can significantly reduce the computational cost [4]. In
particular, the use of autoencoders for rank reduction enhances the interpolation on
nonlinear manifolds [5].

Whereas the usual engineering problem is to obtain the solution for a given geom-
etry, the principal design problem is to get the best geometry for a given “solution”,
i.e., the inverse problem. Inverse problems are often ill-posed, meaning that several
geometries may be good choices for a given set of boundary conditions. This is es-
pecially crucial in the design of metamaterial-made components. A procedure that
offers a reasonable solution for inverse problems is also valuable in automating the
design objectives. The purpose of this paper is to demonstrate that the use of deep
rank-reduction autoencoders, a machine learning technique, facilitates both the for-
ward and inverse problems.

The employed methodology consists of creating three types of models, two of
which are low-rank approximations of the geometry and the solution, respectively.
The third type of model involves the latent coefficients of the geometry and solution.
The purpose of these models is to train the latter model type from the latent variables
of the geometry and the solution, navigating forward and backward. The procedure
can be used not only for the recovery of trained correspondences between geometry
and solution, but also to discover new design possibilities (generative design), thanks
to the available general interpolative nature of the machine learning procedure used.
Given the generality of the procedure, the proposed approach may result in further sig-
nificant advances in topology optimization not only of mechanical metamaterial-based
components, but also in multiphysics ones.

In the next section, we briefly review the topology optimization (TO) problem and
the solution procedure. Thereafter, we recall the ideas behind the Rank Reduction
Autoencoders (RRAEs) and the methodology being used. For classical readers of
Civil-Comp, we will try to make conceptual parallelisms with mechanical and civil
engineering computational procedures.
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2 Topology optimization approach

The problems considered will be bi-dimensional. Therefore, the working domain Ω is
a rectangular one with ne 2D finite elements and nd degrees of freedom. The constitu-
tive behavior will be linear at infinitesimal strains. As it is usual in TO, the purpose is
to minimize the compliance (i.e. displacements) using a target volume percentage ful-
filling the equilibrium equation. In this work, the SIMP procedure will be employed.
Given the design vector consistent of the densities of each element ρ ∈ Rne, the ob-
jective (“cost”) function to minimize, along the constraints, is (note that the 1/2 factor
is irrelevant here):

minimize
ρ

J(ρ) = dT (ρ)K(ρ)d(ρ) ≡
ne∑
e=1

Je(ρe) =
ne∑
e=1

dT (ρe)Ke(ρe)d(ρe) (1)

subject to
ρ

d(ρ) = K−1p (2)

g(d) =
V (ρ)

Vmax

− f ≤ 0 (3)

0 ≤ ρ ≤ Ine (4)

where d ∈ Rndof is the global vector of displacements and K is the global stiffness
matrix. Each one is obtained as usual following the typical finite elements assembly,
e.g. d = ∧ne

e=1de, where de is the displacement vector of element e; similarly K =
∧ne

e=1Ke, where Ke, is the stiffness matrix of element e.

In the SIMP method, it is assumed that the Young modulus of each element is
related to the density in the form

Ee(ρ : e) = Emin + ρpe(E0 − Emin) (5)

where E0 is the reference modulus for the bulk material being used and Emin is the
minimum allowed value to avoid a rank deficient stiffness matrix, because all elements
are mounted regardless of being “void” or ‘’filled”. The parameter p is a penalization
parameter (a typical value of 3 is used) to force dichotomic solutions (material/void =
ρ = 1/ρ ≃ 0). It is inmediate to show that

Ke(ρe) = Ee(ρ)eK̂e0 (6)

with K̂e0 = Ke0/E0 being the stiffness matrix of element “e” considering a E0 = 1.

To avoid pathologies typical of SIMP methods like checkerboard patterns, it is also
customary to apply some smoothing or filtering. In this case, a neighbour weight-
based density is used, where the weight depends on the nearby densities, say at a
distance R,
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ρ̂e =

∑ne

i=1 weiρi∑ne

i=1wei

(7)

To solve the optimization problem there are several options. The most common
ones are gradient-based, e.g. an Optimality Criteria Method [6], or the Method of
Moving Asymptotes [7]. To obtain a convenient form of the gradient, assuming that
the loads do not depend on the densities, we can take the derivative of the equilibrium
equation to get K(ρ)∂d(ρ)/∂ρ = −dT (ρ) ∂K/∂ρ. The jacobean is processed
element by element, i.e. Ke(ρe)∂de(ρe)/∂ρe = −dT

e (ρe) ∂Ke/∂ρe = −p(E0 −
Emin)

p−1dT
e (ρe) K0e. Therefore, considering also the replacement of the densities by

the smoothed ones

∂J

∂ρ
=

ne∧
e=1

∂J

∂ρe
=

ne∧
e=1

ne∑
k=1

∂J

∂ρ̂k

∂ρ̂k
∂ρe

=
ne∧
e=1

ne∑
k=1

∂J

∂ρ̂k

wke∑
i wki

(8)

3 Rank-Reduction Autoencoders

The ideas behind Rank-Reduction Autoencoders (RRAEs) and the formulation em-
ployed herein can be found in [5]. Additionally, the reader can see a comparison with
traditional autoencoders.

The purpose of autoencoders is to learn a reduced dimensionality of the problem,
representing data efficiently by capturing the main aspects while neglecting the less
relevant ones. There are many versions, but the most used ones are based on multilayer
perceptrons (the basis of neural networks). When compared to structural dynamics,
autoencoders are similar to a procedure for generating simple models with equivalent
structural responses to a larger structure. Autoencoders first “encode” (reduce) the
features and then “decode” to reconstruct the response. The best “model” (latent space
Y ) generates the decoded response closest to the encoded one. The learned reduced
model (latent space) may be used in similar ways to the simplified dynamics model.
The generated mapping is X̃ = D(E(X)), where the encoding and decoding mapping
operations are denoted by E(·) and D(·) respectively, where X = {x1,x2, ...,xn} is
the input data with of n samples and xi is the vector (or matrix) of features. In essence,
the autoencoder operation is

X
D×n

E−→
▷

Y
L×n

D−→
◁

X̃
D×n

(9)

Rank-reduction autoencoders do not only hinge on the reduction of the encoder,
but also incorporate a further reduction of the latent space by the use of the Singular
Value Decomposition (SVD), such that
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Y
L×n

= U
L×r

Σ
r×r

V T

r×n
−→ Ỹ

L×n
= Ũ

L×kmax

Σ̃
kmax×kmax

Ṽ
T

kmax×n
= Ũ

L×kmax

A
kmax×n

(10)
or

{ỹ1, ..., ỹn}
L×n

= {u1, ...,ukmax}
L×kmax

×
{
a1, . . . ,an

}
kmax×n

(11)

where r is the number of singular values and kmax the number of them chosen in
the reduction. The dimension of the latent space is L << D, the dimension of the
features. The number of used modes is kmax << r.

The performed operation is ideally similar to choosing only the lower or higher
modes of the simplified model above to reproduce the main dynamic characteristics
of the main system in structural dynamics.

3.1 Topology Optimization methodology using RRAEs

Let X be the discretized geometry data and S the discretized solutions. If we have an
already trained RRAE, we have an encoding for the geometry and an encoding for the
solutions; refer to them respectively as Eg and Es. For a given geometry sample xj ,
we can express it in the latent space by the corresponding general Ũ–matrix and the
specific sample coefficients ai using

yi = Eg(xi) −→ ai = Ũ
∼1
yi (12)

where (·)∼1 is the pseudoinverse (in the case Ũ is square, its pseudoinverse is the
transpose because Ũ is orthogonal). The decoding is

x̃i = Dg(ỹi = Ũai) (13)

In a similar way, for the solution, taking similar symbols

zi = Eg(si) −→ bi = Ṽ
∼1
zi (14)

The decoding is
s̃i = Dg(z̃i = Ṽ bi) (15)

Recall that multi-layer preceptors are used to generate the mappings, as well as
the mappings between the coefficients of the geometries and the solutions, namely,
NN ⌈

∗ : ai → bi for the direct mapping, and ,NN ⟩
∗ : bi → ai for the inverse one.

With the trained models, the overall procedure can be seen in Figure 1. The com-
putational pipeline of the direct and inverse problems is as follows.
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yi = Eg(xi) −→ ai = Ũ
T
yi −→ bi = NN d(ai) −→ s̃i = Ds(Ṽ bj) (16)

and

zi = Es(si) −→ bi = Ṽ
T
zi −→ ai = NN i(bi) −→ x̃i = Dg(Ũaj) (17)

Note that the solution may be, for example the von Mises stress or any other scalar or
vector variable. The cases with a scalar variable are the most challenging ones because
the less bijective case.

Figure 1: Procedure to address the direct geometry-to-solution and inverse solution-
to-geometry problems. Three NN models are separately trained: the geome-
try RRAE(UA), the solution RRAE(V B) and the latent cofficient direct
and inverse mappings NN d and NN i.

4 Example

For the example, the von Mises stress is selected as the solution variable. The domain
is discretized in 80×80 2D four-node finite elements. E0 = 1, ν = 0.3, Emin = 10−9,
p = 3, filter radius for the weigths of the smoothed densities of 1.5, 100 volume
fraction contraint f values equispaced between 0.1 and 0.1. The Optimality criteria
have been chosen, along with the well-known top88.m 88-lines Matlab code [8].

Figure 3 shows the training and test results of the CNN-RRAE geometries model.
After the training, it is seen that the model is capable of recovering a solution to the
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Figure 2: Domain and boundary conditions for the topology optimization problem
consisting on designing a half beam

problem for a given volume fraction f without the need to perform finite element
simulations.

Figure 4 shows the training and test results of the inverse problem, namely, if the
von Mises stress distribution is given, the topology in the original design domain that
corresponds to that distribution is obtained. This means that if we desire a stress
distribution in a given domain, we could be capable of identifying the structure that
would result in such pursued stress distribution.

5 Conclusions

In this work, we have presented the use of deep Rank-Reduction Autoencoders (RRAEs)
in topology optimization, both to solve the forward problem (determine the geometry
and solution given a design domain and boundary conditions) and the inverse problem
(given a solution like a stress distribution in a design domain, obtain the geometry that
would result in such a distribution.

RRAEs facilitate the cross-mappings between the latent spaces of the geometry
and solution autoencoders via the relation of the singular value decompositions. This
brings a promising approach to solving the usually ill-posed inverse problem.
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Figure 3: Convolutional Neural Network RRAE geometries model: (a) Training, (b)
Testing.
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