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Abstract

This work introduces a finite element framework to accelerate density-based topology
optimization through reduced hierarchical bases and condensation. The mesh has mi-
croelements embeded into macroelements. The method projects fine-scale displace-
ments onto a reduced basis that consists of boundary and internal modes, and per-
forms the elimination of internal degrees of freedom at the macroelement level prior
to global assembly. This results in a significantly smaller linear system while preserv-
ing compatibility with the standard SIMP optimization loop. The method requires no
modifications to the optimization algorithm and remains robust across different filter-
ing strategies. Through classical benchmark examples, the method demonstrates its
ability to deliver high-resolution, mechanically accurate designs with reduced com-
putational effort, making it a practical choice for large-scale topology optimization
problems.
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1 Introduction
Topology optimization is key in modern component design, enabling the automatic
generation of high-performance layouts for lightweight and mechanically efficient
components. Since its inception through homogenization-based methods [1] and the
development of the SIMP (Solid Isotropic Material with Penalization) approach [2,3],
topology optimization (TO) has found many applications in aerospace [4], automo-
tive [5], and civil engineering [6]. However, TO needs the repetitive solution of large
finite element models, so the computational demands of solving the large-scale finite
element systems at every iteration of the TO algorithm remain a critical bottleneck—
particularly in high-resolution or three-dimensional problems.

Efficient solution of large finite element models is common to other problems,
like multiscale ones. Many acceleration strategies have been proposed to address this
challenge, including multigrid solvers (teamed with iterative methods) [7], multiscale
frameworks [8], substructuring-based reduction [9], and neural network surrogates
[10]. More recently, methods combining static condensation and model order reduc-
tion (MOR) have shown promise in reducing analysis time without sacrificing fidelity
[11–13]. These methods can also be combined with the previous ones. While these
efforts have improved performance in specific settings, few offer a general, scalable
solution compatible with standard density-based optimization loops.

In this context, we propose a finite element framework that incorporates hier-
archical condensation to accelerate structural analysis within topology optimization
(named HiCon-FEM). The method reduces computational complexity by projecting
element-level displacements onto a compact basis—comprising boundary and inter-
nal modes—and eliminating internal degrees of freedom prior to global assembly.
Unlike traditional multiscale methods, HiCon-FEM requires no assumption of scale
separation and integrates seamlessly into the classical SIMP loop.

The key ideas behind HiCon-FEM are presented herein. Its efficiency and accu-
racy are demonstrated through classical benchmark examples. The results indicate
that HiCon-FEM can substantially reduce computational effort while delivering high-
resolution, physically meaningful designs.

In the next sections, we first introduce the formulation of the proposed method,
including its integration into the SIMP framework. We then validate its performance
through numerical experiments on standard topology optimization benchmarks. Fi-
nally, we discuss the scope, limitations, and potential directions of the method for
future work.
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2 Methodology

HiCon-FEM accelerates topology optimization by reducing the computational cost of
finite element analysis through a two-stage hierarchical condensation process. It is
designed to integrate directly into the standard SIMP framework without requiring
changes to the optimization algorithm. In this section, we present the methodology of
the method as well as its integration with the SIMP algorithm.

2.1 SIMP-Based Topology Optimization

Although the ideas can be used in any TO procedure, because of their wide use, we
adopt the standard SIMP formulation. In SIMP, the design domain is discretized into
finite elements, each associated with a density variable ρe ∈ [ρmin, 1]. The objective is
to minimize structural compliance under a material volume constraint:

min
ρ

c(ρ) = fTu s.t.
Ne∑
e=1

veρe ≤ V, K(ρ)u = f , (1)

where K(ρ) =
∑

e ρ
p
eK

e
0 is the global stiffness matrix assembled from element-wise

contributions. The penalization factor p ≥ 3 promotes discrete designs, while a small
lower bound 0 < ρmin ≪ 1 prevents singularities in regions approaching void.

The compliance sensitivity is obtained via the adjoint method:

∂c

∂ρe
= −pρp−1

e uT
e K

e
0ue, (2)

where ue is the displacement vector restricted to element e. These sensitivities are
used to update the design using the optimality criteria (OC) method, which remains
one of the most effective approaches for density-based optimization problems.

To suppress numerical instabilities such as checkerboarding and mesh dependency,
we apply filtering strategies based on the example. For the MBB beam, we use a
classical sensitivity filter:

∂̂c

∂ρe
=

1

ρe
∑
j∈Ne

wej

∑
j∈Ne

wejρj
∂c

∂ρj
, (3)

where wej = max(0, rmin − dist(e, j)), and Ne is the neighborhood of element
e. For larger-scale problems, such as bridge and cantilever examples, we adopt a
convolution-based density filter. A normalized Gaussian kernel centered at (i0, j0)
with a standard deviation σ is defined as:

G(i, j) =
1

2πσ2
exp

(
−(i− i0)

2 + (j − j0)
2

2σ2

)
, (4)
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and the filtered sensitivity is computed as:

∂̂c

∂ρe
=

G ∗
(
ρe · ∂c

∂ρe

)
G ∗ ρe + ε

, (5)

where ∗ denotes full convolution and ε is a small number to prevent division by zero.
These filtering techniques improve convergence and promote manufacturable black-

and-white topologies. With the optimization framework established, we next intro-
duce the HiCon-FEM condensation procedure that accelerates the analysis phase with-
out altering the SIMP optimization loop.

2.2 Hierarchical Condensation Framework

The core idea behind HiCon-FEM is to accelerate the finite element analysis step
by applying model order reduction at the element level before global assembly. The
method relies on two consecutive operations: projection onto a hierarchical basis and
static condensation of internal modes. These steps are performed independently within
each macroelement, allowing efficient parallel implementation.

Each macroelement is composed of a structured grid of standard micro finite ele-
ments. Let ue ∈ Rne denote the vector of all displacement degrees of freedom (DOFs)
associated with the microelements inside a macroelement. Instead of assembling ue

directly into the global system, we approximate it using a reduced vector ve ∈ Rme

via:

ue ≈ Aeve, (6)

where Ae ∈ Rne×me is an interpolation matrix constructed from hierarchical basis
functions. These include serendipity-type functions defined on the boundary and a set
of internal “bubble” modes with vanishing trace on the boundary.

By substituting into the local equilibrium equation, we obtain a reduced stiffness
system:

K̃eve = f̃e, with K̃e = AT
e KeAe, f̃e = AT

e fe, (7)

where Ke is the standard elemental stiffness matrix assembled over all microelements
within the macroelement, and fe is the corresponding force vector.

To further reduce system size, we partition ve into external (boundary) DOFs vE
e

and internal (bubble) DOFs vI
e . Assuming no external forces act on the internal modes,

static condensation yields:

vI
e = −(K̃II

e )−1K̃IE
e vE

e , (8)

which leads to a final condensed stiffness matrix defined only on boundary DOFs:
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K̂e = K̃EE
e − K̃EI

e (K̃II
e )−1K̃IE

e . (9)

This condensed matrix K̂e is then assembled into the global system. Although
the resulting matrix is generally denser, the number of global DOFs is drastically
reduced. Since each macroelement is treated independently, the procedure is highly
parallelizable and well suited for modern architectures.

In the next section, we describe how this reduced-order system integrates into the
classical SIMP loop without modifying the optimization logic.

2.3 Integration Strategy within the SIMP Framework

In classical topology optimization using the SIMP method, the finite element analy-
sis (FEA) step accounts for the majority of computational effort, especially in high-
resolution or three-dimensional settings. While the optimization step itself—typically
based on optimality criteria (OC) or the method of moving asymptotes (MMA)—is
computationally inexpensive, the cost of solving the linear system grows rapidly with
problem size. It is in this context that HiCon-FEM offers a substantial benefit by
reducing the number of degrees of freedom prior to global assembly, thereby acceler-
ating the solution of the equilibrium equations.

HiCon-FEM fits naturally into the SIMP loop. The stiffness matrix for each macroele-
ment is projected onto a reduced basis via the operation K̃e = AT

e KeAe, where Ae

encodes the hierarchical functions. This projection is followed by static condensa-
tion to eliminate internal modes, producing the final condensed matrix K̂e. These
matrices are assembled into a reduced global system, which is then solved as usual.
Local displacements are subsequently recovered and used to compute compliance and
sensitivities.

Given the structural inhomogeneity within macroelements, the resulting displace-
ment fields may deviate from those predicted by classical FEM at the microscale.
This discrepancy, however, is corrected by the use of filter techniques. In practice,
the compatibility of HiCon-FEM with standard filter strategies—such as density and
convolution filters—ensures that the design evolves smoothly and remains manufac-
turable. Nevertheless, in extreme cases where very few internal modes are retained
and the filtering radius is too small, the optimization process may yield discontinuous
or fragmented structures. Such pathological cases highlight the importance of balanc-
ing reduction aggressiveness with filtering resolution, and they reinforce the benefit of
HiCon-FEM’s seamless integration with well-established filtering techniques.

To reduce redundant computation during the projection step, a matrix comparison
check is implemented between the current and previous iteration. For each macroele-
ment, the difference between the new and old stiffness matrices is measured by count-
ing the number of differing nonzero entries. If the difference falls below a fixed thresh-
old, the projected matrix is updated incrementally via K̃e ← K̃old

e +AT
e ∆KeAe, where

∆Ke denotes the element-wise change. Otherwise, the full projection is recomputed.
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This approach reduces computational overhead in later iterations when design changes
become more localized.

The method has been implemented entirely in Julia, chosen for its combination of
high-level syntax and low-level performance. The implementation takes advantage of
parallelization, loop vectorization, sparse matrix operations, and preallocation strate-
gies to minimize runtime and memory usage. While iterative solvers were initially
considered, direct solvers proved more efficient due to the banded structure of the
condensed global matrix. Despite the absence of low-level optimization or external
FEM libraries, the current implementation achieves substantial performance gains,
indicating that the benefit arises from the method’s structure itself rather than from
aggressive coding practices.

In summary, HiCon-FEM replaces only the FEA step in the SIMP loop, without
altering the optimization procedure or filtering techniques. Its ability to significantly
reduce the number of unknowns per iteration—combined with its parallel nature and
compatibility with standard filtering—makes it an effective and scalable alternative to
traditional FEM in large-scale topology optimization.

3 Numerical Results

To assess the performance and robustness of HiCon-FEM, we apply it to three classical
topology optimization problems: the MBB beam, a bridge domain, and a cantilever
beam. Each problem is solved using both HiCon-FEM and a classical SIMP im-
plementation under identical physical and numerical settings, including penalization,
volume fraction, and filtering strategy.

3.1 MBB Beam

The MBB beam is a classical benchmark problem in structural topology optimization,
widely used for method validation due to its simplicity and well-understood response
characteristics. The objective is to minimize compliance while satisfying a global
volume constraint.

The design domain, boundary conditions, and external load are shown in Fig. 1.
The left edge is fixed in the horizontal direction to prevent lateral motion. A vertical
load is applied at the top-left corner, while a roller support is placed at the bottom-right
to prevent rigid body motion. No symmetry is assumed; the full domain is optimized.

To evaluate the performance of HiCon-FEM, results are compared to those obtained
using a Julia-optimized classical SIMP implementation based on the Top88 algorithm
[14]. Both methods were run on the same computational setup with identical param-
eters: a penalization factor of p = 3, a volume constraint of V/V0 = 0.5, and the
same convergence tolerance of tol = 0.16, defined as the minimum relative change
in design variables between iterations.

HiCon-FEM was tested on the MBB beam problem using two mesh resolutions:
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Figure 1: Design domain, boundary conditions, and external load for the MBB beam
optimization problem.

900×300 and 1200×400 elements. For both cases, a sensitivity filter was applied with
radius values r = 3, 6, 9, and 12 to evaluate the effect of regularization on solution
quality and method stability. The domain was subdivided into macroelements with
varying coarseness, and identical optimization parameters were used across all runs.

In Fig. 2, we present the final optimized layouts obtained on the 1200 × 400 grid
using a fixed macroelement division of 48 × 16 and varying filter radii. The visual
comparison confirms that HiCon-FEM achieves results comparable to those of the
classical SIMP method across a range of filtering intensities. Despite reducing internal
degrees of freedom, the method preserves structural clarity and robustness throughout
the convergence process.

Although the final designs produced by HiCon-FEM closely resemble those of the
classical method, it is important to recall that the reduced-order solution is not the
most accurate when only a small number of internal modes are retained. In this ex-
ample, each macroelement uses just four internal (bubble) modes. As a result, the
displacement field lacks fine-scale resolution, making the role of filtering essential to
stabilize and regularize the optimization. This effect is particularly evident for the
smallest filter radius (r = 3), where the final design becomes fragmented and ill-
conditioned, with disconnected members that would be unsuitable for manufacturing.
These results highlight the importance of choosing appropriate filter parameters when
aggressive model reduction is used.

To isolate solver performance, Table 1 reports the runtime of the first 10 iterations
for the 900 × 300 and 1200 × 400 grids under different macroelement resolutions.
Each entry includes the speed-up of HiCon-FEM relative to classical SIMP and the
final compliance ratio after 10 iterations.
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Figure 2: Final designs for the MBB beam on a 1200× 400 grid using different filter
radii. Left column: HiCon-FEM. Right column: Classical SIMP. Compli-
ance (c), number of iterations, and filter radius (r) are reported for each
result.

3.2 Bridge and Cantilever Problems

Given the importance of filtering in stabilizing reduced-order solutions, we conducted
additional tests to verify whether the performance of HiCon-FEM holds when a differ-
ent filtering technique is used. Specifically, we applied a Gaussian convolution filter,
Eq. (5), to the bridge and cantilever benchmark problems. These cases allow us to
evaluate whether the method remains effective under alternative smoothing strategies
and design geometries.

Both the bridge and cantilever problems are solved on a 1200 × 400 grid with a
macroelement division of 48× 16. In the bridge domain, the bottom corners are fixed,
and a singular vertical point load is applied at the center of the bottom edge, generat-
ing a symmetric compressive configuration that mimics typical bridge, like structural
behavior. In the cantilever beam, the left edge is fully clamped, and a concentrated
vertical force is applied at the midpoint of the right edge, representing a bending-
dominated scenario frequently used in structural optimization benchmarks. No sym-
metry condition is enforced, and the full domains are included in the optimization. A
Gaussian convolution filter with filtering radius of r = 25 is applied in both problems.

Figure 2 shows the final optimized designs for the bridge (top row) and cantilever
(bottom row) problems using HiCon-FEM and classical SIMP.
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Resolution Classical Time (10 iter) Macroelements HiCon Time (10 iter) Speed-Up

900×300 59.52 s

30×10 26.61 s 2.24×
45×15 27.19 s 2.19×
60×20 32.84 s 1.81×
75×25 51.70 s 1.15×

1200×400 102.94 s

30×10 55.52 s 1.85×
48×16 51.53 s 2.00×
50×20 51.81 s 1.99×
60×20 55.33 s 1.86×

Table 1: Runtime for 10 iterations of HiCon-FEM vs. classical SIMP on the MBB
beam problem under different macroelement resolutions.

Figure 3: Comparison of final optimized designs using HiCon-FEM (left column) and
classical SIMP (right column) with a Gaussian convolution filter (r = 25.0).
Top row: bridge problem. Bottom row: cantilever problem. Compliance (c),
number of iterations, and filter radius are annotated. The stopping criterion
was set to tol = 0.16.
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In both cases, the results are remarkably similar in topology and compliance, demon-
strating that HiCon-FEM remains accurate even under a different filtering strategy.
While HiCon-FEM slightly underestimates the compliance compared to the classical
method, it requires fewer iterations to converge, highlighting its potential for acceler-
ating large-scale optimizations without sacrificing structural fidelity.

4 Conclusions

This work introduced a hierarchical condensation-based finite element stage designed
to accelerate topology optimization. The method integrates seamlessly into the topol-
ogy optimization framework, requiring no modification to the other optimization steps
and operating as a drop-in replacement for standard FEA.

Through numerical experiments on MBB beam, bridge, and cantilever problems,
we demonstrated that the method significantly reduces computation time while main-
taining high-quality results. For moderate macroelement sizes and appropriate filter
parameters, speed-ups of up to 2.24× were observed with minimal deviation in com-
pliance.

While the reduced-order model offers substantial computational benefits, its accu-
racy depends on both the number of internal modes retained and the strength of the
applied filter. In particular, the use of filtering proved essential to compensate for the
localized approximation introduced by hierarchical projection.

Future developments will focus on extending the capabilities to handle three-dimensional
domains and nonlinear material behavior, where gains are expected to be more impor-
tant for these cases in which reducing the global system size is critical.
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