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Abstract 
 

This paper proposes a machine learning-powered Geometry Filter to enhance the 

design capabilities of SIMP-based topology optimization. By reconstructing the 

paradigm of traditional density filtering functions, the method establishes a filtering 

format with geometric feature modulation, enabling effective interaction between 

human design intent and the topology optimization process. To achieve this, machine 

learning is employed to construct multimodal geometric feature matching metrics, 

transforming explicit geometric elements, abstract stylistic features, and intuitive 

conceptual designs into mathematically embeddable representations within the 

optimization workflow. Through a dynamic mapping mechanism between geometric 

features and density fields, the filter evolves beyond a mere numerical tool for 

stabilizing optimization instabilities, becoming an active geometric feature 

modulation component in topology optimization. Since human design intent is 

directly embedded in the filter, the need for additional complex feature constraints is 

eliminated, significantly reducing optimization complexity. Numerical examples 

demonstrate the method’s flexibility in generating structures with diverse geometric 

features, effectively facilitating human-machine interaction between design intent and 

structural mechanical performance. 
 

Keywords: topology optimization, filtering techniques, geometry filter, geometric 

features, human-Informed, machine learning. 
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1  Introduction 
  

As a powerful design tool, topology optimization has been widely adopted in 

engineering fields. Its core objective is to achieve optimal mechanical performance 

by seeking the most efficient material distribution under given load and boundary 

conditions. Due to its robust design capabilities, topology optimization has 

demonstrated significant application value in aerospace, automotive lightweighting, 

and biomedical implant design. 

  

Among various topology optimization methods, the SIMP (Solid Isotropic Material 

with Penalization) method has become one of the most widely used approaches due 

to its clear physical interpretation and straightforward numerical implementation. 

However, in the SIMP method, the discrete distribution of material density may lead 

to alternating high and low-density arrangements in adjacent elements, forming a 

checkerboard pattern. This non-physical phenomenon can significantly reduce the 

engineering practicality of optimization results. Additionally, the optimization 

outcomes of the SIMP method may heavily depend on the finite element mesh 

discretization, where different mesh sizes or element types can yield entirely distinct 

topological structures. To mitigate these potential numerical instabilities, filtering 

techniques have been introduced into the topology optimization process. By 

smoothing the material density or sensitivity within the design domain, filtering 

effectively suppresses non-physical features caused by numerical instability, resulting 

in more coherent and practically viable optimization results. In early work, Sigmund 

et al. and Petersson et al. established sensitivity filtering schemes [1-3], where the 

actual sensitivities are filtered and the modified sensitivities are used to update the 

design. This approach has proven reliable for various problems. Bruns et al. and 

Bourdin et al. proposed density filters [4,5], which effectively suppress checkerboard 

patterns by performing weighted averaging of densities within the neighborhood of 

design variables. Bourdin et al. further developed convolution filtering methods [6], 

employing convolution operators to smooth material density, successfully addressing 

checkerboard effects and mesh dependency issues in topology optimization while 

enhancing the numerical stability and engineering applicability of design outcomes. 

These filtering schemes provide effective regularization tools for solving topology 

optimization problems. 
  

However, the aforementioned studies merely proposed filters as "image 

processing" tools to suppress numerical instabilities in topology optimization, lacking 

more application-oriented geometric control capabilities. With deepening 

understanding, filtering techniques began to be employed for handling geometric 

constraints. For instance, Guest et al. achieved minimum feature size control in 

topology optimization by using nodal design variables and projection functions [7]. 

Their subsequent research further developed this concept [8], proposing a filtering-

based maximum length scale constraint that provided maximum size control methods 

for topology optimization. Kawamoto et al. and Lazarov et al. introduced filters based 

on Helmholtz-type partial differential equations [9,10]. By implicitly defining filters 

through solving PDEs, they avoided the computational costs of neighborhood 
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searches in traditional filters. Later, Langelaar developed a filtering scheme tailored 

for additive manufacturing (AM) requirements from a filtering perspective [11], 

enabling overhang angle constraints in topology optimization. This filter ensured 

optimized designs met AM forming constraints through hierarchical geometric 

control. Vatanabe et al. further proposed a unified projection-based filtering technique 

[12] capable of handling multiple manufacturing constraints including minimum 

member size, minimum aperture, and symmetry. 

  

However, as product design trends toward personalization and multifunctionality, 

the scope of topology optimization has long transcended pure mechanical metrics, 

gradually encompassing more subjective preferences such as geometric features, 

structural styles, and even design intuition. This not only demands topology 

optimization methods to achieve high standards in fundamental performance metrics 

but also expects the optimization process to facilitate human-computer interaction 

with designers while accommodating complex aesthetic styles and design features 

(e.g., biomimetic designs or aesthetic requirements) to match rapidly evolving 

multidimensional design needs. For example, texture replication techniques adopted 

texture-matching concepts [13-15], optimizing style as an appearance constraint 

function to guide stylistic emergence in topology optimization. Machine learning-

assisted approaches proposed topology optimization methods for architecturally 

artistic designs [16-18], integrating structural performance with artistic elements by 

combining human design preferences. Furthermore, similar to introducing geometric 

patterns or styles into topology optimization, studies explored methods to incorporate 

more abstract human design intuition with automated topology optimization 

techniques [19-21], thereby enhancing design capabilities. 

  

However, existing research primarily focuses on introducing desired structural 

features during the topology optimization process, without establishing intuitive 

quantification for design-challenging elements such as human intuition. This may lead 

to uncontrollable design styles in topology optimization and a lack of intuitive 

physical interpretation. It also exposes functional limitations in practical applications. 

The key issues are reflected in three aspects: 1) Limited functional positioning of 

Filters. Current Filters are still predominantly regarded as image post-processing 

techniques and have not been endowed with the capability to actively generate 

geometric structures. 2) Conflict between Filter introduction and design principles. 

Filters often emphasize ensuring local smoothness or meeting specific numerical 

constraints, which contradicts the need to generate structures with complex topologies 

and intricate geometric features. 3) Disconnection between Filters and design intent. 

In current topology optimization frameworks, high-level design elements such as 

stylistic features and human design intuition are typically introduced as explicit 

constraints into the topology model, remaining separate from Filters. This separation 

increases the complexity and solving difficulty of optimization problems. Therefore, 

exploring how to empower filters with the ability to directly generate geometric 

structures—embedding complex design requirements (e.g., geometric complexity, 

style preferences) implicitly into filter design or parametric representations (while 

maintaining controllability)—holds significant research value. This could expand the 
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design space of topology optimization and the functional scope of filters, elevating 

filters from traditional auxiliary image-processing tools to core components of 

topology optimization methods, achieving higher-level functional integration. 

 
  

This study proposes a novel topology optimization method that incorporates 

diverse geometric information into filters through machine learning empowerment. 

The superposition and guidance of geometric elements are achieved via filters. In this 

method, "geometry" is regarded as a generalized concept aimed at capturing varied 

artificial design intents and reflecting different design considerations. Accordingly, 

its scope not only encompasses common stylistic geometries but also extends to 

biological structures, hand-drawn geometries, and other multidimensional geometric 

features that embody specific functions (e.g., mechanical biomimetics), design 

intuition (e.g., hand-drawn sketches), or more abstract, functionally oriented 

characteristics. This paper reshapes the filtering mechanism in topology optimization 

through machine learning, inherently embedding geometric shaping capabilities into 

the structural generation process. Unlike traditional post-processing or constraint 

superposition approaches, this method transforms design intent into an intrinsic 

property of a Geometry-Aware Filter. This filter no longer merely serves as a 

numerical stabilizer but evolves into a functional module that actively guides 

structural morphology evolution. By applying style-oriented guidance during 

iterations, the optimization process naturally converges to structural forms that 

combine preset geometric features with mechanical performance. This approach not 

only avoids the increased model complexity and computational costs associated with 

introducing additional constraints but also ensures high robustness and computational 

efficiency, ultimately achieving deep integration of generalized geometric features 

and structural performance. 

 

  

The remainder of this paper is organized as follows: Section 2 will elaborate on the 

proposed topology optimization filtering method based on geometric information 

fusion, including the extraction and representation of geometric information, as well 

as specific strategies for integrating it into the filtering process. Section 3 will validate 

the method’s effectiveness through a series of numerical examples while exploring its 

applications with different types of geometric information, such as stylistic geometry, 

compliance geometry, and hand-drawn geometry, and analyzing how these diverse 

geometric influences affect optimization outcomes. Finally, Section 4 will summarize 

the main contributions of this work and outline future research directions. 

 

 
 

2  Methods 
 

2.1  Optimization Problem Modeling 
 

The core idea of the SIMP method is to transform the discrete material distribution 

problem into a continuous density field optimization problem. 
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Figure 1: Basic SIMP topology optimization framework 

 

In SIMP, the design domain is discretized into a finite number of elements, with 

the material density of each element optimized as a continuous variable. The design 

domain is denoted as Ω , containing N elements. The material density of each element 

is represented by 𝜌𝑖  , where 𝑖 = 1,2, … ,𝑁  . These density values are typically 

constrained between 0 and 1, 0 ≤ 𝜌𝑖 ≤ 1  , where 𝜌𝑖 =  1 indicates a fully solid 

element, while 𝜌𝑖 = 0 denotes a void element. 
 

Based on the above definitions, the topology optimization problem can be 

formulated as the following mathematical expression: 
 

𝑚𝑖𝑛
𝜌
𝐶(𝜌) = 𝑈𝑇𝐾𝑈 

𝑉(𝜌) =∑𝜌𝑖

𝑁

𝑖=1

𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 (1) 

0 ≤ 𝜌𝑖 ≤ 1, 𝑖 = 1,2, … ,𝑁 

𝐾𝑈 = 𝐹 
 

The objective of the optimization problem is to minimize the structural compliance 

𝐶(𝜌) , where ρ represents the design variables, namely the material density of each 

element, to find the optimal material distribution. Here, 𝑈 denotes the displacement 

vector of the structure, 𝐾 is the stiffness matrix of the structure, which is a function of 

the material density 𝜌 . The compliance function 𝐶(𝜌)  measures the deformation 

energy of the structure under given loads; the smaller its value, the higher the 

structural stiffness. Minimizing compliance is a common optimization objective in 

topology optimization. The optimization process must satisfy the volume constraint 

𝑉(𝜌) ≤ 𝑉𝑚𝑎𝑥, where 𝑉(𝜌) represents the total volume of the structure, a function of 

the material density 𝜌 . In the formula, 𝑉𝑖 denotes the volume of the i -th element, and 

𝑉𝑚𝑎𝑥 is the preset maximum volume limit, ensuring the optimized structure does not 

exceed the predetermined material usage. The optimization problem satisfies the finite 

element equation 𝐾𝑈 = 𝐹 , where 𝐹 is the load vector. 
 

The method proposed in this paper focuses on reshaping the filtering process in 

topology optimization by embedding geometric information to guide structural design 

styles. Since this innovation only affects the filtering stage, the core density-based 

topology optimization framework retains its original structure and solution 

mechanism, thereby ensuring the continuity and validity of subsequent analyses. 
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2.1.2  Geometry Feature-Based Filtering Method 
 

To achieve geometry feature-guided topology optimization, the design domain is 

discretized into a rectangular grid composed of ni × nj  elements. Each element is 

associated with a design variable density value ρ(i,j)  , where i  and j  represent the 

vertical and horizontal positions of the element, respectively. The optimization goal 

is to generate new density values ρ̃(i,j)  from the design variables ρ(i,j)  through the 

filtering process while incorporating geometric feature information. 
 

In this method, the filtered density value 𝜌̃(𝑖,𝑗) of an element is influenced by the 

geometric feature density. The geometric feature density value 𝜙(𝑖,𝑗) of element (𝑖, 𝑗) 

is defined as a combination of different geometric features: 
 

𝜙(𝑖,𝑗) = 𝑔(𝜉1(𝑖,𝑗), 𝜉2(𝑖,𝑗), … , 𝜉𝑛(𝑖,𝑗)) (2) 
 

In Equation (2), 𝜉𝑛(𝑖,𝑗) represents the density value of the n -th geometric feature. 

As mentioned earlier, these "geometric features" are a broad concept that can 

encompass various forms such as stylistic geometry, compliance geometry (reflecting 

structural flexibility requirements), and even freehand geometry (capturing design 

intuition). Each feature characterizes a desired attribute of the structure from a specific 

dimension. The function g defines how these geometric features are integrated. In this 

study, for computational simplicity, the maximum function is adopted, namely: 
 

𝜙(𝑖,𝑗) = 𝑚𝑎𝑥(𝜉1(𝑖,𝑗), 𝜉2(𝑖,𝑗), … , 𝜉𝑛(𝑖,𝑗)) (3). 
 

The maximum function simulates the "union" effect of multiple geometric features 

to some extent, effectively preserving the intensity of geometric features while 

remaining relatively simple and efficient in computation. Ultimately, the filtered 

density value 𝜌̃(𝑖,𝑗) of an element can be expressed as: 
 

𝜌̃(𝑖,𝑗) = 𝑚𝑖𝑛(𝜌(𝑖,𝑗), 𝜙(𝑖,𝑗)) (4). 
 

Equation (4) indicates that the filtered density value 𝜌̃(𝑖,𝑗) of element (𝑖, 𝑗) depends 

on the minimum value between its design variable 𝜌(𝑖,𝑗) and the geometric feature 

density 𝜙(𝑖,𝑗)  . By adjusting different geometric features, fine control over the 

structural morphology can be achieved, allowing it to gradually exhibit predefined 

geometric characteristics during the topology optimization process. 
 

To make the aforementioned filtering process differentiable, we need to apply 

smooth approximations to the non-smooth operators min and max in Equations (5) 

and (6). The smooth approximation of the min function can be expressed as: 
 

𝜌̃ = 𝑠𝑚𝑖𝑛(𝜌, 𝜙) =
1

2
(𝜌 + 𝜙 − √(𝜌 − 𝜙)2 + 𝜖 + √𝜖) (5). 

 

The smooth approximation of the max function can be expressed as: 
 

𝜙 = 𝑠𝑚𝑎𝑥(𝜉1(𝑖,𝑗), 𝜉2(𝑖,𝑗), … , 𝜉𝑛(𝑖,𝑗)) = (∑ 𝜉𝑘
𝑃𝑛

𝑘=1 )
1

𝑃 (6). 
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In Equations (5) and (6), 𝜖  and 𝑃  are parameters controlling the accuracy and 

smoothness of the approximation. Adjusting these two parameters allows for a trade-

off between computational efficiency and convergence during the optimization 

process. 

 

 
 

Existing manufacturing-constraint-based filtering methods typically ensure 

structural manufacturability by considering the material density of underlying support 

units, with the core idea being to define support relationships through physical 

material distribution. The proposed method conceptually redefines the notion of 

"support" by introducing a new metric—geometric feature density 𝜙(𝑖,𝑗) . 

 

 
 

Specifically, while existing methods derive material support from the distribution 

of adjacent underlying units, this method anchors support relationships to whether a 

unit satisfies predefined geometric features. This shift from traditional physical 

material support to geometric feature support enables more sensitive and flexible 

responses to complex design intents. 

 

 
 

2.2  Acquisition and Processing of Textured Geometric 

Information 
 

2.2.1  Acquisition of Textured Geometric Information 
 

The previous section introduced how to integrate geometric feature information 

into the topology optimization filtering process. This section will elaborate in detail 

on how to extract geometric feature information from input texture images and convert 

it into geometric feature density applicable to the filtering process. 

 
 

To achieve this goal, the concept of texture synthesis is adopted. Texture synthesis 

aims to generate new textures with similar visual characteristics from a given example 

texture. This study utilizes the idea of texture synthesis to extract and generate 

geometric features that can guide topology optimization. Numerous existing works 

are dedicated to synthesizing textures from example inputs, and these methods can be 

broadly categorized into pixel-based and patch-based approaches. Local region-

growing techniques synthesize textures pixel by pixel or patch by patch. Among them, 

patch-based methods typically succeed better in synthesizing high-quality textures, as 

they effectively preserve the global structure of the texture. On the other hand, pixel-

based methods are more suitable for constrained synthesis, as they allow control over 

individual pixel values. This paper draws on patch-based texture synthesis methods, 

as they can generate high-quality texture information while maintaining the global 

structure of the texture. 
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Figure 2: Method for extracting texture geometric features 

 

The texture data is sourced from a library containing I geometric patterns, which 

consists of a series of PNG and OBJ files representing 2D and 3D geometric patterns, 

respectively. For the 2D case, the pixel values of the PNG files are directly interpreted 

as material density 𝜌 ∈ [0,1]  , expressed as 𝜌(𝑥, 𝑦) =
𝐼𝑃𝑁𝐺(𝑥,𝑦)

255
 , where IPNG(x, y) 

represents the pixel value of the PNG image at coordinates (𝑥, 𝑦). 
 

To extract geometric features, the entire design domain Ω is divided into several 

overlapping rectangular patches 𝐵(𝛺𝑒) . Each patch has dimensions of 𝑑𝑥 × 𝑑𝑦  , 

where 𝑑𝑥  and 𝑑𝑦  are the horizontal and vertical sizes of the rectangular patch, 

respectively. The overlapping regions between patches are 𝑑𝑥/4  and 𝑑𝑦/4  in the 

horizontal and vertical directions, respectively. This overlap size setting follows the 

empirical practices of Hu and Kwatra et al. [22,23], who used similar strategies and 

achieved favorable results. For each patch 𝐵(𝛺𝑒) in the design domain 𝛺 , we attempt 

to find the most similar patch ℐℬ in the given input texture example image 𝒥 . 
 

The squared norm is used to measure the distance between two patches. 

Specifically, for a patch B in the design domain and a patch ℐℬ in the example texture, 

their distance 𝐷(𝐵, ℐℬ) can be calculated by the following formula: 
 

𝐷(𝐵, ℐℬ) = ∑ 𝑤(𝑖,𝑗)(𝑖,𝑗)∈𝐵 (𝐵(𝑖,𝑗) − ℎ(ℐ(𝑖,𝑗)))
2

(7). 

 

Here, 𝐵(𝑖,𝑗)  represents the density value of element 𝑖, 𝑗  in patch 𝐵  , and 𝐽(𝑖,𝑗) 

denotes the texture value of the corresponding element 𝑖, 𝑗 in texture patch 𝐽ℬ . By 

minimizing 𝐷(𝐵, ℐℬ) , the most similar texture patch ℐℬ to the design domain patch B 

can be found in the input texture ℐ . Here, h is the Heaviside function, which maps the 

given texture to the interval [0,1] and achieves a certain degree of binarization. Let 

𝑤(𝑖,𝑗) be the weight, typically set to 𝑤(𝑖,𝑗) = 𝐵(𝑖,𝑗) . This weighting scheme focuses 

only on the texture similarity in material regions, i.e., areas with non-zero density 
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values. The texture patch with the smallest 𝐷(𝐵, ℐℬ)  is identified as the optimal 

matching patch. 
 

 

Compared to traditional appearance-based matching methods, performance-driven 

matching can more effectively enhance structural performance. However, directly 

evaluating the contribution of each texture patch to the overall structural performance 

involves high computational complexity. Conventional methods require placing each 

texture patch in the corresponding position within the structure and calculating 

compliance through finite element analysis to determine whether structural 

performance is improved. Although this approach offers high accuracy, it demands 

enormous computational effort and is inefficient. To reduce computational costs, this 

paper proposes a sensitivity-analysis-based method for evaluating texture 

contributions. Sensitivity reflects the impact of a slight change in element density on 

structural compliance variation, expressed mathematically as 
𝑑𝑐

𝑑𝜌
 , where dc denotes 

the change in compliance and dρ represents the infinitesimal change in density. By 

computing the density difference 𝛥𝜌 of a texture patch in the current structure, its 

influence on element density can be quantified. This, combined with sensitivity 

analysis, further approximates the patch’s effect on structural compliance: 

 
 

𝛥𝑐 =
𝑑𝑐

𝑑𝜌
𝛥𝜌 =

𝑑𝑐

𝑑𝜌
(𝐵(𝑖,𝑗) − ℎ(𝐽(𝑖,𝑗))) (8). 

 

 

The texture block that minimizes the reduction in compliance is identified as the 

optimal matching block. While this method demonstrates high accuracy under small 

deformation conditions, it also provides effective reference under large deformation 

scenarios. Experimental results indicate that the sensitivity analysis-based approach 

can significantly enhance computational efficiency and yield structural design 

solutions with superior compliance. In practical applications, traditional appearance 

matching methods and performance-based matching methods each have their 

advantages, allowing flexible selection based on specific requirements. Appearance 

matching methods are suitable for scenarios with stringent structural appearance 

requirements, whereas performance-based matching methods are more appropriate for 

design tasks prioritizing structural performance optimization. 
 

Through the aforementioned block matching process, each block B in the design 

domain finds its optimal matching block ℐℬ in the input texture ℐ . The density values 

of these matched texture blocks ℐℬ  are assembled into one of the global texture 

geometric feature density fields, such as 𝜉1 in the aforementioned Equation (7). This 

global texture geometric feature density field 𝜉1 will serve as part of the geometric 

feature density field 𝜙 and be used in the filtering method described in the previous 

section to guide the topology optimization process. Overlapping regions between 

texture blocks are handled using a simplified direct coverage scheme. Subsequent 

numerical experiments demonstrate that this approach effectively preserves geometric 

feature representation while generating structures with excellent connectivity. 
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The above steps complete the conversion from an input texture image to a 

geometric feature density field, providing the necessary geometric information for 

subsequent topology optimization. 
 

2.2.2  CNN-Based Rapid Texture Block Extraction 
 

The previous section introduced a texture synthesis method based on block 

matching, which employs brute-force search to identify the most similar texture 

blocks in the exemplar texture for blocks in the design domain. However, this brute-

force matching strategy incurs high computational costs, particularly when handling 

large-scale design domains and high-resolution textures, rendering it inefficient in 

practical applications. Although acceleration techniques such as fast matching 

algorithms, parallel processing, and random sampling can significantly improve 

matching speed in structural topology optimization and image editing, these methods 

still have limitations. On one hand, their matching speed remains insufficient for 

large-scale optimization problems; on the other hand, their approximate matching 

strategies may lead to loss of gradient information, which is detrimental to gradient-

descent-based topology optimization algorithms. 
 

In recent years, the rapid development of deep learning has provided a new 

paradigm for intelligently embedding and processing geometric information in 

topology optimization. Methods based on convolutional neural networks (CNNs) not 

only significantly accelerate related computations but, more crucially, can provide 

gradient information through backpropagation—this is essential for achieving 

geometry-guided topology optimization based on gradients. This study employs a 

CNN architecture whose core function is to learn and encode latent geometric features 

in local density fields. The network takes density blocks of the design domain as input 

and, through its learned ability to express geometric features, identifies and quantifies 

the most relevant geometric patterns from a predefined pattern library while 

outputting the gradients required for optimization. 
 

To train the convolutional neural network (CNN), predefined geometric pattern 

libraries are first discretized into numerous texture blocks, each corresponding to a 

category in the pattern library. Subsequently, input data for network training are 

generated by applying random noise perturbations to these texture blocks, while the 

original, unperturbed texture blocks serve as the target output. For performance 

matching methods, random 
𝑑𝑐

𝑑𝜌
 values can be generated as input, and the optimal 

texture blocks calculated using performance matching theory serve as output, thereby 

constructing the training database. The approach of randomly generating 
𝑑𝑐

𝑑𝜌
 values 

not only enables rapid data generation, providing the network with diverse training 

samples and avoiding complex finite element analysis, but also exhibits greater 

robustness when handling complex geometric patterns. 
 

The convolutional neural network (CNN) architecture adopted in this paper is 

relatively concise, primarily consisting of convolutional layers, batch normalization 

layers, and ReLU activation function layers stacked sequentially. The input layer of 
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the network receives image blocks of size 𝑑𝑝 × 𝑑𝑝 × 𝑑𝑧  , where 𝑑𝑝  represents the 

side length of the image block. In traditional 2D convolutional neural networks, 𝑑𝑧 
denotes the number of channels in the input image (e.g., RGB images have 3 

channels), whereas in this study, 𝑑𝑧 represents the thickness of the image along the z 
axis: for 2D problems, 𝑑𝑧 is set to 1; for 3D data processing tasks, 𝑑𝑧 indicates the 

number of sampling points along the depth direction. 
 
 

 

 
 

 

 
 

Convolutional layers are used to extract local features from image blocks, batch 

normalization layers accelerate training and improve the network’s generalization 

ability, and ReLU activation layers introduce nonlinearity to enhance the network’s 

expressive power. Finally, the network outputs the density values of the texture blocks 

through a regression layer. 
 

 
 

 
 

 

 
 

The training process employs the Adam optimization algorithm with 

hyperparameters set to a maximum of 100 epochs, an initial learning rate of 1 × 10−3 

, and a mini-batch size of 32 to control the training. We also adopt a random shuffling 

strategy, shuffling the data before each epoch to further enhance training efficiency 

and stability. The entire training process is highly efficient, typically completing in 

under half a minute on a computer equipped with an RTX 4080 GPU. Once trained, 

the CNN network can be used for rapid texture patch extraction, providing essential 

information for subsequent geometric feature filtering. Notably, a corresponding pre-

trained network can be generated for each geometric pattern, eliminating the need for 

retraining during each optimization, which further improves the computational 

efficiency of the method. 

 

 

 

 

 
 

2.3  Numerical Techniques 
 

2.3.1  Multi-Resolution Optimization 
 

To reduce computational costs while ensuring texture clarity, this study employs a 

multi-resolution optimization strategy. The core idea is to start optimization at a low 

resolution and gradually increase it, thereby avoiding suboptimal local minima and 

accelerating the convergence of the optimization process. 
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Figure 3: Multi-resolution optimization method 

 

 

 

Specifically, this study adopts a three-resolution optimization strategy. The process 

begins with a low-resolution design domain 𝛺1 and example texture 𝐼1 , where the 

size of Ω1 is set to one-quarter of the target design domain. Note that under low-

resolution optimization, the matched texture features are obtained by downsampling 

the high-resolution input texture example 𝒥  , rather than upsampling the low-

resolution texture, which effectively preserves texture clarity. Simultaneously, the 

patch size associated with 𝛺1 is also set to one-quarter of the high-resolution value. 

After completing optimization at low resolution, the results are upsampled using a 

bilinear interpolation scheme to serve as initial values for the next resolution level. 

This upsampling applies to both the design domain 𝛺 and texture patches ℐℬ . The 

process repeats, optimizing at progressively higher resolutions until the target 

resolution is reached, yielding the final optimized result. 

 
 

2.3.2  Preprocessing and Progressive Introduction of Geometric 

Features 
 

During the process of extracting geometric features, attention should be paid to 

potential gray areas in the input image. These gray areas correspond to intermediate 

density values in the density field, which may lead to gray-scale elements in the 

optimization results—a phenomenon generally undesirable in final binary structural 

designs. To prevent the generation of gray-scale elements, we employ the Heaviside 

projection function to preprocess geometric features, converting them into an 

approximately binary form. The Heaviside projection function not only achieves 

binarization but also preserves gradient information, facilitating the convergence of 

gradient-based optimization algorithms. The specific Heaviside projection function 

ℎ(𝜉) is defined as follows: 
 

ℎ(𝜉) =
𝑡𝑎𝑛ℎ(𝛽𝑇𝑇) + 𝑡𝑎𝑛ℎ(𝛽𝑇(𝜉 − 𝑇))

𝑡𝑎𝑛ℎ(𝛽𝑇𝑇) + 𝑡𝑎𝑛ℎ(𝛽𝑇(1 − 𝑇))
(9) 
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Here, assuming 𝜉 represents the geometric feature density value to be processed, 𝑇 is 

the threshold (set to 0.5 in this study), and 𝛽𝑇  is the parameter controlling the 

steepness of the Heaviside projection curve (empirically set to 25). This function maps 

the value of 𝜉 to a range close to 0 or 1, thereby achieving an approximately binary 

effect. In addition to processing geometric features during optimization, binarization 

preprocessing can also be applied to the input texture image in the initial stage, both 

of which yield similar results. 
 

However, introducing strong geometric feature constraints early in the 

optimization process may worsen problem behavior, making the optimization prone 

to falling into local optima. To avoid this issue, this study adopts a progressive 

introduction strategy for geometric features. Specifically, a control parameter is 

introduced to adjust the intensity of geometric features. The modified geometric 

feature density value 𝜉 is expressed as: 
 

𝜉 = 𝑎 + (𝑏 − 𝑎)ℎ(𝜉) (10) 
 

The geometric feature density 𝜙(𝑖,𝑗) in Equation (6) will also be calculated using ξ̃ 

processed by the Heaviside projection and progressive introduction strategy, i.e.: 
 

𝜙(𝑖,𝑗) = 𝑠𝑚𝑎𝑥(𝜉1(𝑖,𝑗), 𝜉2(𝑖,𝑗), … , 𝜉𝑛(𝑖,𝑗)) (11) 
 

This formula remaps the geometrically filtered eigenvalues after Heaviside 

projection from the [0,1] interval to the [a, b] interval. During optimization, we fix 

𝑏 = 1 while gradually decreasing parameter a from 1 to 0. When 𝑎 = 1 , 𝜉 equals 1, 

meaning the geometric feature constraint is inactive, reducing the optimization 

problem to an unconstrained free optimization where all regions retain material. As a 
progressively decreases, the geometric constraint intensifies. When a finally reaches 

0, 𝜉 reverts to the original Heaviside-projected value, allowing material retention only 

in regions with geometric feature support, achieving full geometric feature 

incorporation. This gradual introduction strategy enables the optimization algorithm 

to thoroughly explore the design space in early stages while progressively satisfying 

geometric constraints in later phases, effectively avoiding local optima and yielding 

high-quality designs. 
 

Although the gradual introduction strategy is effective, a fixed a decrement rate 

may sometimes inadequately address dynamic complexities during optimization, 

potentially causing overly aggressive geometric feature incorporation that 

compromises stability. To address this, our study introduces an adaptive feedback 

control mechanism: it monitors real-time trends of key performance metrics (e.g., 

structural compliance) and dynamically adjusts the a reduction process. If objective 

function deterioration is detected, a reduction is paused to allow optimizer adaptation; 

conversely, if improvement occurs, a continues decreasing per schedule to steadily 

enhance geometric influence. This performance-based adaptive control not only 

refines geometric integration pacing but also improves optimization robustness and 

convergence quality, ultimately yielding structures with superior performance and 

morphology. 
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2.3.3  Sensitivity Analysis  
 

To drive gradient-based optimization, the sensitivity of the objective function 

relative to design variables must be computed. This section details the derivation 

process of this sensitivity after implementing geometric feature filtering. 
 

The structural compliance 𝐶(𝜌) can be expressed as: 
 

𝐶(𝜌) = 𝑈𝑇𝐾𝑈 (12) 
 

where 𝑈 is the displacement vector, and K is the stiffness matrix—a function of 

material density 𝜌 . The sensitivity of structural compliance to design variables is 

calculated via: 
 

𝑑𝐶

𝑑𝜌(𝑖,𝑗)
= −𝑈𝑇

𝑑𝐾

𝑑𝜌(𝑖,𝑗)
𝑈 (13) 

. 
 

Here, 
𝑑𝐾

𝑑𝜌(𝑖,𝑗)
 represents the derivative of the stiffness matrix with respect to the 

design variable 𝜌(𝑖,𝑗) . Since geometric feature information is introduced during the 

filtering process, the influence of filtering on sensitivity must be considered. 

According to the chain rule, the derivative of stiffness matrix 𝐾 with respect to design 

variable 𝜌(𝑖,𝑗) can be expanded as: 
 

𝑑𝐾

𝑑𝜌(𝑖,𝑗)
=

𝑑𝐾

𝑑𝜌̃(𝑖,𝑗)

𝑑𝜌̃(𝑖,𝑗)

𝑑𝜌(𝑖,𝑗)
(14) 

 
𝑑𝐾

𝑑𝜌̃(𝑖,𝑗)
 denotes the derivative of the stiffness matrix with respect to the filtered 

density 𝜌̃(𝑖,𝑗)  , which can typically be obtained through finite element analysis; 

furthermore, 
𝑑𝜌̃(𝑖,𝑗)

𝑑𝜌(𝑖,𝑗)
 can be expressed as: 

 

𝑑𝜌̃(𝑖,𝑗)

𝑑𝜌(𝑖,𝑗)
=
𝜕𝜌̃(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
+
𝜕𝜌̃(𝑖,𝑗)

𝜕𝜙(𝑖,𝑗)

𝑑𝜙(𝑖,𝑗)

𝑑𝜌(𝑖,𝑗)
(15) 

 

Although the computation of 𝜙(𝑖,𝑗)  involves all densities 𝜌(𝑘,𝑙)  within the 

rectangular block 𝐵 where element 𝑖, 𝑗 is located (where (𝑖, 𝑗) ∈ 𝐵 ), 𝜌̃(𝑖,𝑗)  is solely 

determined by 𝜌(𝑖,𝑗) and 𝜙(𝑖,𝑗) . Therefore, when calculating 
𝜕𝛷(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
 , only the influence 

of density value 𝜌(𝑖,𝑗) on 𝜙(𝑖,𝑗) needs to be considered, without accounting for other 

element densities. Further expanding, the computation of 
𝜕𝜌̃(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
 involves the 

differentiation of the min function. We employ the smooth function smin to replace 

the min operator. Thus, the partial derivatives of 𝜌̃(𝑖,𝑗) with respect to 𝜌(𝑖,𝑗) and 𝜙(𝑖,𝑗) 

are respectively: 
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𝜕𝜌̃(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
=
1

2

(

 1 −
𝜌(𝑖,𝑗) − 𝜙(𝑖,𝑗)

√(𝜌(𝑖,𝑗) − 𝜙(𝑖,𝑗))
2
+ 𝜖)

 (16) 

𝜕𝜌̃(𝑖,𝑗)

𝜕𝜙(𝑖,𝑗)
=
1

2

(

 1 +
𝜌(𝑖,𝑗) − 𝜙(𝑖,𝑗)

√(𝜌(𝑖,𝑗) − 𝜙(𝑖,𝑗))
2
+ 𝜖)

 (17) 

 

Whereas 𝜙(𝑖,𝑗) is a function of 𝜉𝑘(𝑖,𝑗) . When geometric features include texture 

characteristics 𝜉1 obtained through appearance matching, the influence of 𝜉1 must be 

considered. By the chain rule, the derivative of 𝜙(𝑖,𝑗) with respect to design variable 

ρ(i,j) can be expressed as: 
 

𝑑𝛷(𝑖,𝑗)

𝑑𝜌(𝑖,𝑗)
=
𝜕𝛷(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
+∑

𝜕𝛷(𝑖,𝑗)

𝜕𝜉𝑘(𝑖,𝑗)

𝑛

𝑘=2

𝜕𝜉𝑘(𝑖,𝑗)

𝜕𝜉𝑘(𝑖,𝑗)

𝜕𝜉𝑘(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
(18) 

 

Sketches, flexibility solutions, and other geometric features do not change with 

variations in density; therefore, 
𝜕𝜉𝑘(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
 is 0. Furthermore, the second term in the 

equation is 0. Considering the first term in the above equation, we use the smax 
function for smooth approximation, and the partial derivative of 𝜙(𝑖,𝑗) with respect to 

𝜉1(𝑖,𝑗) is: 
 

𝜕𝜙(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)
= 𝜉1(𝑖,𝑗)

𝑃−1 (∑𝜉𝑙(𝑖,𝑗)
𝑃

𝑛𝑆

𝑙=1

)

𝑃
𝑃−1

(19) 

 

Based on the definition of 𝜉1̃, we have: 
 

𝜕𝜉1(𝑖,𝑗)

𝜕𝜉1(𝑖,𝑗)
= 𝑎 + (𝑏 − 𝑎)

𝑑ℎ(𝜉1(𝑖,𝑗))

𝑑𝜉1(𝑖,𝑗)
(20) 

= 𝑎 + (𝑏 − 𝑎)
𝛽𝑇 (𝑠𝑒𝑐ℎ (𝛽𝑇(𝜉1(𝑖,𝑗) − 𝑇)))

2

𝑡𝑎𝑛ℎ(𝛽𝑇𝑇) + 𝑡𝑎𝑛ℎ(𝛽𝑇(1 − 𝑇))
(21) 

 

where sech denotes the hyperbolic secant function. 
 

This study primarily focuses on obtaining texture features through CNN; thus, 
𝜕𝜉1(𝑖,𝑗)

𝜕𝜌(𝑖,𝑗)
 can be derived via backpropagation in CNN. This gradient information is 

crucial for calculating the sensitivity of geometric feature density with respect to 

design variables. This term is often ignored and set to 0 in traditional methods[23]. In 

the proposed method, CNN enables precise computation of this gradient, thereby 

improving optimization accuracy. However, it is worth noting that for performance-
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matching methods, this term must still be neglected as 0 due to the inability to 

establish the relationship between 𝜉1(𝑖,𝑗) and 𝜌(𝑖,𝑗) , following conventional practice. 

 

 

 

 

 

 

 
 

3  Numerical Examples 
 

In the numerical examples of this study, the MATLAB programming environment 

is adopted, implemented based on the classic 99-line topology optimization code [24], 

and solved using the Optimality Criteria (OC) method. All design domains are 

assumed to consist of Poisson’s ratio 𝑣 = 0.3 , Young’s modulus 𝐸0 = 1 , and 

minimum Young’s modulus 𝐸min = 1 × 10
−4  . To enhance the precision and 

efficiency of optimization results, a three-resolution optimization strategy is 

employed, progressively optimizing at low, medium, and high resolutions. The 

convergence criterion is defined as a design variable change of less than 1 × 10−3 or 

a relative change in the objective function of less than 1 × 10−4  . The maximum 

iteration steps for each resolution are set to 100, which experiments confirm is 

sufficient to ensure convergence and stable topology optimization results. Initial 

design variables are uniformly distributed with a density value of 𝜌0 = 0.5 . A density 

filter is applied with a radius of 𝑟𝑚𝑖𝑛 = 2.0 to avoid checkerboard patterns and ensure 

smooth optimization results. 

 

 

 

 

 

 

 
 

3.1  Benchmark Examples 
 

This section demonstrates the effectiveness of the proposed method through three 

comparative examples, including classical simply-supported beam optimization, 

texture geometry-driven optimization, and sketch-based mechanics intuition-driven 

optimization. Figure 4a illustrates the basic setup of the examples: the left end of the 

classical simply-supported beam is fixed, while the right end is subjected to a vertical 

displacement constraint, with a load magnitude of 𝐹 = 1 applied at the center of the 

upper structure. For simplified computation, half of the structure is analyzed. The 

design domain is discretized into meshes of 40 × 80、80 × 160  and 160 × 320 

under low, medium, and high resolutions, respectively, with a volume fraction set to 

𝑉𝑚𝑎𝑥 = 0.4 . 
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Figure 4: Comparison of optimization results for classical simply-supported 

beam, texture geometry-driven optimization, and mechanics intuition-driven 

optimization 
 

Figure 4b presents the results of pure compliance optimization, which incorporates 

no geometric information, with the sole objective of minimizing compliance. The final 

compliance value is 𝑐 = 100.77 . This result serves as a benchmark for comparison 

with other examples. 
 

Figure 4c displays the topology optimization results driven by texture geometry. 

The outcome shows that the global structure is generated under texture geometry 

guidance, but due to significant design space constraints, the compliance value 

increases markedly to 𝑐 = 212.52 . This example verifies the strong constraining 

effect of texture geometric features on optimization results. 
 

Figure 4d shows the optimization results driven by a sketch, which was drawn by 

the designer based on mechanics intuition following a Michell truss layout. By 

incorporating mechanics intuition, the compliance value of the optimized result 

improves compared to pure texture-driven optimization, reaching c = 111.00 . The 

use of filtering technology ensures the optimized result strictly adheres to the 

predefined geometric features, demonstrating the method’s effective control over 

geometric characteristics. 
 

Notably, some local protrusions appear on the structural boundary in Figure 4c. 

This occurs because the optimization problem can sometimes unavoidably converge 

to local optima, preventing further exploration of better material distributions. 

Additionally, the optimized results exhibit almost no fractured structures, as the sole 

objective is minimizing compliance, eliminating the need to sacrifice continuity for 

other constraints. 
 

The comparison of these three examples fully validates the flexibility of the 

proposed method in integrating texture geometry, mechanics intuition, and topology 
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optimization, enabling the generation of structurally feasible designs while satisfying 

geometric feature constraints. 
 

3.2  Compliance and Texture Combined Optimization 
 

To validate the effectiveness of the proposed method in fusing multiple geometric 

features, the classical short beam problem illustrated in Figure 5a was selected as a 

test case. The left boundary of the beam was fully fixed, with a vertically downward 

concentrated load of magnitude 1 applied at the lower right corner. Compliance was 

incorporated as one of the geometric features, combined with texture features. 

Specifically, optimized compliance solutions under different volume fractions (0.3, 

0.25, 0.2) were used as compliance-based geometric features, onto which the floral 

texture geometric feature shown in Figure 2b was superimposed. During optimization, 

the upper limit of the total volume fraction was set to 0.4. 
 

 
Figure 5: Optimization results combining compliance and texture 

 

The optimization results demonstrate that as the volume fraction of compliance 

solutions increases, texture features gradually emerge and occupy more areas within 

the structure. This indicates that the proposed method effectively integrates texture 

features into the optimization process, achieving varying degrees of stylized 

expression under different volume fractions. Since compliance-optimized solutions 

are incorporated as geometric features, the mechanical performance of the optimized 

results surpasses that of single-texture or single-sketch-guided outcomes, though 

remains inferior to pure compliance-optimized solutions. This aligns with 

expectations, as introducing texture features inevitably compromises structural 

mechanical performance to some extent. Moreover, structural compliance 

progressively increases with the proliferation of texture features—an intuitive 

outcome given that texture features typically exhibit weaker mechanical properties, 

and their increased presence necessarily elevates overall compliance. 
 

Further observation reveals that texture features predominantly appear near 

structural support regions. This occurs because the optimization objective is to 
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minimize compliance, prompting the structure to seek mechanically optimal solutions 

near supports under geometric constraints. The introduction of texture features alters 

the search path of the objective function, guiding the optimization algorithm to 

preserve texture geometry while satisfying mechanical performance requirements. 
 

Compared to existing constraint-based methods, the proposed approach integrates 

texture features into the optimization process through filtering techniques while 

optimizing under conditions of minimal compliance and volume constraints. 

Conventional methods typically treat texture features as additional constraints that 

must be strictly satisfied during optimization, which may lead to potential conflicts 

between texture features and compliance minimization objectives. For instance, 

relevant studies indicate that after introducing texture constraints, the fulfillment of 

volume constraints may be compromised, and optimization efficiency can 

significantly decrease [15]. To satisfy texture constraints, structures may require 

additional material or morphological changes in certain areas, thereby affecting 

mechanical performance and potentially generating structural forms detrimental to 

stiffness. In contrast, our method naturally incorporates texture features into the 

optimization process via filtering techniques without introducing additional constraint 

functions. Under the premise of meeting volume constraints, the sole optimization 

objective is minimizing compliance, allowing texture features to be fully utilized as 

structural components that bear partial mechanical loads while maintaining good 

structural connectivity. This approach not only avoids material waste caused by 

forcibly satisfying constraints but also achieves better balance between mechanical 

performance and aesthetic characteristics. Furthermore, by eliminating the need to 

handle complex constraints, our method significantly improves computational 

efficiency and the robustness of the optimization process. 
 

4  Conclusions and Contributions 
 

This study proposes a novel topology optimization method based on filtering 

techniques, aiming to deeply integrate geometric features into the structural design 

process. Departing from conventional topology optimization strategies that treat 

aesthetic or geometric constraints as add-ons, this method embeds predefined 

geometric features into the filtering process from the initial optimization stage, 

transforming them into intrinsic drivers of structural generation. These geometric 

features can either originate from manually designed key geometric elements or be 

extracted as stylized patterns from textures. Through innovation in traditional filtering 

techniques, this research organically combines geometric patterns with the density 

field filtering process, guiding the optimization algorithm to follow predefined 

geometric trajectories while searching for optimal material distributions, thereby 

constructing structural forms that possess both excellent mechanical performance and 

distinctive aesthetic characteristics. The method not only enables fully texture-driven 

structural generation but also flexibly integrates textures with stiffness-optimized 

results or other conceptual geometries based on designer intuition, creating diverse 

hybrid structural forms and achieving precise control over geometric features. Since 

aesthetic elements are embedded early in the optimization, the specified geometric 

features naturally blend into the structure itself, resulting in fluid and organic aesthetic 
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qualities that avoid the disharmony introduced by post-hoc manual adjustments or 

additional constraints. Compared to traditional methods, this approach eliminates the 

need for complex external constraint functions, significantly improves computational 

efficiency and robustness, effectively mitigates the risk of converging to local optima, 

and demonstrates the capability to flexibly generate structures with diverse geometric 

features. While meeting mechanical performance requirements, it naturally endows 

structures with unique aesthetic styles, achieving a high degree of unification between 

design intent and engineering feasibility. 

 
 

However, this study still has certain limitations that need further improvement. 

Firstly, the current deep learning technology employed is primarily based on simple 

matching principles and has not yet fully explored the deep semantic information of 

textures. Future research could consider introducing more advanced texture fusion 

extraction techniques, such as VGG19-based deep learning models, to capture richer 

texture features. Secondly, compared to methods that treat texture style as an explicit 

constraint, our approach, while more intuitive in style control, still has room for 

improvement in control precision. Currently, the balance between style and flexibility 

is qualitatively adjusted by optimizing the volume fraction through flexibility 

regulation, which cannot achieve fine-grained style control. Additionally, the current 

geometric feature extraction method is mainly trained on a limited set of texture 

samples. Future work could further expand the corresponding neural network models 

to achieve adaptive adjustment of texture pattern size and orientation by learning from 

massive samples, which may require constructing deeper and more complex network 

architectures. Finally, in the current version, sketches are provided by designers in a 

single pass, whereas in actual design workflows, iterative refinement and real-time 

adjustments are often necessary. Therefore, enhancing user interaction capabilities to 

allow designers to adjust geometric features in real-time during the optimization 

process will be an important direction for future research. 
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