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Abstract 
 

During the service period of engineering equipment, it is very easy to suffer from the 

effect of accidental factors occurring local failure, and then evolved into catastrophic 

macro-failure. Although the current fail-safe design can resist the local failure caused 

by corrosion, fatigue and manual damage, it cannot resist the one caused by 

overloading. To solve this problem, this paper proposes a novel crack-safe design 

through peridynamic-based solid isotropicmaterial with penalization (SIMP) method. 

This method firstly utilizes the fracture simulation capability of peridynamics to 

obtain the most dangerous crack case of the structure through continuous iteration and 

fracture analysis, and then by maximizing the stiffness of the most dangerous crack 

case to obtain the crack-safe structure. Numerical examples show that this strategy 

can obtain the structural design with crack-safe effect. 
 

Keywords: local failure, fail-safe design, overloading, crack-safe design, 

peridynamics, solid isotropicmaterial with penalization (SIMP) method. 
 

1  Introduction 
 

When the structure undergoes local failure, the structural load-bearing performance 

will be significantly reduced, which will lead to catastrophic consequences in 

engineering practice. Therefore, how to use topology optimization technology to 

improve the structural load-bearing performance after the occurrence of local failure 

has become a key concern of researchers, which is the problem of local failure safety.  
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Two types of local failure are generally distinguished. The first is caused by 

overloading. The second type is by accidental factors. At present, researchers are 

mainly concerned with the local failure safety caused by accidental factors, i.e., the 

fail-safe problem [1-3], but few researchers are concerned with the local failure safety 

caused by overloading. 
 

Since the local failure caused by overloading is generally in the form of crack, we 

define such local failure safety problem as crack-safe problem in order to distinguish 

it from fail-safe problem. In crack-safe problem, the local failure (i.e., crack) is 

generated under the effect of external load. Therefore, solving the crack-safe problem 

requires, firstly, the support of fracture mechanics theory, and secondly, the setting of 

a reasonable optimization process. In recent years, an emerging theory of fracture 

mechanics—peridynamics (PD)—has attracted extensive attention from researchers 

because of its particular suitability for dealing with complex fracture mechanics 

problems [4, 5]. Therefore, the combination of PD with topology optimization 

provides the feasibility of solving crack-safe problem. 
 

In this study, we combine the PD theory and SIMP method to propose a feasible 

optimization process for solving the crack-safe problem. In this process, we first give 

a non-designable domain based on the force transfer path. The purpose of setting this 

domain is to ensure the existence of a most dangerous crack case in the crack-safe 

problem. Next, we will find the most dangerous crack case through continuous 

iterations and fracture analysis, and then maximize the stiffness of the most dangerous 

crack case to obtain the crack-safe structure. Numerical examples show that the 

optimization process can obtain the structural design with crack-safe effect. 

 

The rest of the paper is organized as follows: in Section 2, we give a brief 

introduction to the PD model and SIMP method, followed by the optimization 

formulation and solution procedure of the crack-safe problem in the framework of PD 

and SIMP. A numerical example is provided to demonstrate the effectiveness of the 

proposed method in Section 3. Section 4 gives the conclusion. 

 

2  Methods 
 

2.1 Bond-based peridynamic model (BBPD) 

 

As illustrated in Figure 1, the BBPD model considers the internal force on a point x 

in a material as the set of forces on it from all points in the domain of influence of that 

point, and researchers express this set in terms of an integral, which leads to the 

integral equilibrium equation:  

∫ 𝒇(𝒙′, 𝒙)dV𝒙′

𝐻𝛿(𝒙)

+ 𝒃(𝒙) = 𝟎, ∀𝒙 ∈ Ω, (1) 

where Ω  represents the solution domain; 𝒃(𝒙)  represents the body force density; 

𝐻𝛿(𝒙) = {𝒙′|0 < ‖𝒙 − 𝒙′‖ ≤ 𝛿, 𝛿 > 0} is the neighbourhood of the point x, where 𝛿 

is called horizon which is the radius of the neighborhood. dV𝒙′  represents the 

infinitesimal volume associated to point 𝒙′. 𝒇(𝒙′, 𝒙) denotes the nonlocal long-range 
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force that point 𝒙′ exerts on point 𝒙, and under the assumption of small deformation, 

the definition is: 
𝒇(𝒙′, 𝒙) = 𝑐(𝒙′, 𝒙)𝜼(𝒙′, 𝒙) ∙ 𝒆𝝃 ⊗ 𝒆𝝃, (2)  

where 𝝃 = 𝒙′ − 𝒙 is the connection vector between the two points and it is called 

“bond” in PD; 𝒆𝝃 represents the unit vector in the direction of 𝝃; 𝜼(𝒙′, 𝒙) = 𝒖(𝒙′) −

𝒖(𝒙) represents the relative displacement of point 𝒙′ to point 𝒙; 𝑐(𝒙′, 𝒙) is called the 

micromodulus function, which corresponds to the mechanical property of material.  

 

 

 
Figure 1: Schematic of the BBPD model. 

 

 

In PD, bond break is adopted to represent the fracture failure. A general bond break 

criterion can be expressed as: 

 

𝜇(𝝃, 𝑡) = {
1, if 𝑠(𝝃, 𝜏) ≤ 𝑠0, for all 0 ≤ 𝜏 ≤ 𝑡,

0, otherwise,                   
(3) 

 

where 𝜇 is a parameter related to deformation history. When 𝜇 = 1, it indicates that 

the bond 𝝃  is intact. When 𝜇 = 0 , it indicates that the bond 𝝃  is broken and 

irrecoverable. The t and 𝜏 represent loading time and 𝑠0 is the critical bond stretch, 

which is generally considered to be related to the critical energy release rate 𝐺0. The 

s is the stretch of the bond 𝝃 defined as: 

𝑠 =
‖𝝃 + 𝜼‖ − ‖𝝃‖

‖𝝃‖
. (4) 

Once s exceeds 𝑠0, the bond is broken and irrecoverable. Correspondingly, 𝒇(𝒙′, 𝒙) 

will also disappear. 

 

Finally, based on 𝜇, the effective damage for each point x is defined as: 

𝜑(𝒙) = 1 −
∫ 𝜇dV𝒙′

𝐻𝛿(𝒙)

∫ dV𝒙′
𝐻𝛿(𝒙)

, (5) 

which can be used to indicate the failure of the structure. 



 

4 

 

2.2 SIMP method 

 

The basic idea of the SIMP method is to describe the topology distribution of the 

structure through a density field function 𝜌(𝒙). The standard optimization formulation 

of the SIMP method is given by: 
Find: 𝜒(𝒙)                        

Minimize: 𝐼 = 𝐼(𝜒)                          

subject to: 𝑔𝑖(𝜒) ≤ 0, 𝑖 = 1, ⋯ , 𝑚,

                     𝜒(𝒙) = 0 or 1, ∀𝒙 ∈ Ω,

(6) 

where 𝐼 = 𝐼(𝜌) is the objective function. 𝑔𝑖(𝜌) represents the i-th constraint function 

with m denoting the total number of the constraints. Ω represents the design area. 

 

2.3 The optimization formulation and solution procedure of the crack-safe 

problem 

 

In this study, the crack-safe problem is solved by maximizing the stiffness of the most 

dangerous crack case. In the solution process, we first set the non-designable domain 

based on the force transfer path to ensure the existence of the most dangerous crack 

case. After that, the most dangerous crack case is found by continuous iterations and 

fracture analysis. Finally, the crack-safe design is obtained by maximizing the 

stiffness of the most dangerous crack case. In addition, considering the multi-region 

and multi-load crack-safe problem that exists in engineering practice, we need to 

further maximize the stiffness of the most dangerous crack case with the smallest 

stiffness among all the cases in order to satisfy the multi-region and multi-load crack-

safe design. In summary, the optimization formulation for the crack-safe problem in 

the framework of BBPD and SIMP can be obtained as follows: 
Find: 𝜌(𝒙)                                                                                                      

Minimize: 𝐼 =
max

𝑖 = 1, ⋯ , 𝑛𝑤𝑐
(−𝐶𝑖)                                                                          

Subject to:                                                                                                                         

∫ ∫
1

2
𝒇(𝒙′, 𝒙, 𝜌(𝒙′), 𝜌(𝒙), 𝑑𝑖) ∙ (𝒗𝑖(𝒙′) − 𝒗𝑖(𝒙)) dV𝒙′

𝐻𝛿(𝒙)

dV𝒙
Ω

= 0,

    ∀𝒗𝑖 ∈ 𝒰𝑎𝑑 , 𝑖 = 1, ⋯ , 𝑛𝑤𝑐 ,       

𝑉 − 𝑉̅ = ∫ 𝜌(𝒙)dV
Ω

− 𝑉̅ ≤ 0,      

𝒖𝑖 = 𝒖̅, on Γ𝒖, 𝑖 = 1, ⋯ , 𝑛𝑤𝑐,

𝜌(𝒙) = 1, ∀𝒙 ∈ Ω𝑢𝑑 ,

0 ≤ 𝜌(𝒙) ≤ 1, ∀𝒙 ∈ Ω\Ω𝑢𝑑

(7) 

with 

𝐶𝑖 = ∫ ∫
1

2
𝒇(𝒙′, 𝒙, 𝜌(𝒙′), 𝜌(𝒙), 𝑑𝑖) ∙ 𝜼𝑖(𝒙′, 𝒙)dV𝒙′

𝐻𝛿(𝒙)

dV𝒙
Ω

, (8) 

where 𝐶𝑖  denotes the compliance of the most dangerous crack case for the i-th 

combination and 𝑛𝑤𝑐 denotes the total number of the combination of the region and 
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load. 𝑑𝑖 denotes the most dangerous crack case for the i-th combination, which needs 

to be obtained through continuous iterations and fracture analysis. To facilitate the 

measurement of structural stiffness, displacement loading is used as the external load 

in this study. Therefore, maximizing the smallest most dangerous crack case stiffness 

in all combinations is equivalent to minimizing the negative of the largest most 

dangerous crack case compliance. The first constraint equation represents the virtual 

work principle in bond-based PD, which is used to constrain the force balance of the 

structure. 𝒖𝑖  and 𝒗𝑖  represent the i-th displacement function and the test function, 

respectively; 𝒖̅ represents the prescribed displacement on the boundary Γ𝒖; 𝒰𝑎𝑑 =
{𝒗|𝒗 ∈ ℍ1(Ω), 𝒗 = 𝟎 on Γ𝒖} . 𝑉̅  represents the upper bound of available material 

volume. Ω𝑢𝑑 is the non-designable domain and Ω represents the total design domain. 

 

 

 

 

 

 

 

3  Results 
 

In this section, a numerical example is provided to demonstrate the effectiveness of 

the proposed approach in designing the crack-safe structure. Uniformly distributed 

particles are adopted for the spatial discretization of the problem design domain. The 

particle space is of size 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 1 , where 𝛥𝑥 , 𝛥𝑦  and 𝛥𝑧  represent the 

distance between any two adjacent particles in the x, y, and z directions, respectively. 

Since, in this section, it is only intended to demonstrate the effectiveness of the 

proposed approach, all parameters in the examples are dimensionless. The Young’s 

modulus and Poisson’s ratio are 𝐸0 = 1 and υ = 1/3, respectively. In PD, the horizon 

is specified as 𝛿 = 3𝛥𝑥, the critical bond stretch is set to 𝑠0 = 0.06. 

 

 

 

 

 

 

 

4.1 The L-shape beam problem 

 

The geometry and boundary conditions of the L-shape beam is shown in Figure 2. The 

black area in Figure 2 is the non-designable domain. The upper bound of the available 

material is set to 50%|𝐷|, where |𝐷| represents the total area of design domain. For the 

L-shape beam example, in the case of the loading condition shown in Figure 2, we 

consider the crack-safe problem in two regions, where region 1 is the region 

containing the connection between the beam structure and the fixed end as shown in 

the red box in Figure 2, and region 2 is the region containing the concave corner of 

the beam structure as shown in the blue box in Figure 2. 
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Figure 2: The geometry and boundary conditions of the L-shape beam problem. 

 

 

 

 

 

After iterative solving, the obtained optimization results are shown in Figure 3. 

Figure 3(a) shows the classical stiffness maximization result. Figure 3(b) shows the 

crack-safe result. Next, we perform a quasi-static analysis of the above structure under 

the considered combinations of region and load to compare the crack-safe effect. The 

corresponding fracture cases and damage contours of the structures under the first 

combination are shown in Figure 4. The corresponding fracture and damage contours 

for the second combination are shown in Figure 5. The force-displacement curves and 

stiffness-displacement curves of the structures under the first and second combination 

are shown in Figure 6 and Figure 7, respectively. The stiffness values of the structures 

before and after the occurrence of fracture and the percentage of the remaining 

stiffness after fracture with respect to the initial stiffness for the two combinations are 

given in Table 1. From Figure 6, Figure 7 and Table 1, it can be seen that the crack-

safe structure have significant crack-safe effect under both combinations compared to 

the pure stiffness design. This proves that the proposed method is capable of designing 

a structural design with crack-safe effect. 
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(a)                                                            (b) 

Figure 3: (a) the stiffness maximization result and (b) the crack-safe result. 

 

   

(a)                                                            (b) 

   

(c)                                                            (d) 

Figure 4: The fracture results and damage contours of (a, b) the stiffness 

maximization result, (c, d) the crack-safe result under the first combination. 
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(a)                                                            (b) 

   

(c)                                                            (d) 

Figure 5: The fracture results and damage contours of (a, b) the stiffness 

maximization result, (c, d) the crack-safe result under the second combination. 

 

 

 

 

  

(a)                                                            (b) 

Figure 6: (a) Force-displacement curves and (b) Stiffness-displacement curves for 

the first combination. 
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(a)                                                            (b) 

Figure 7: (a) Force-displacement curves and (b) Stiffness-displacement curves for 

the second combination. 

 

 

 
Initial 

stiffness 

First combination Second combination 

Remaining 

stiffness 

Remaining 

percentage 

Remaining 

stiffness 

Remaining 

percentage 

Stiffness 

maximization result 
0.01545 0.00027 1.75% 0.00064 4.14% 

Crack-safe result 0.00925 0.00698 75.46% 0.00463 50.05% 

Table 1: The stiffness of the two structures. 
 

 

4  Conclusions and Contributions 
 

In this study, a new solution procedure based on PD model and SIMP method is 

proposed to design crack-safe structures capable of resisting overloading. In the 

specific process, we first give an undesignable domain based on the force transfer path 

to ensure the existence of the most dangerous crack case. Next, the most dangerous 

crack case is found through continuous iterations and fracture analysis. Finally, the 

crack-safe structure is obtained by maximizing the stiffness of the most dangerous 

crack case. Numerical examples show that the optimization process given in this study 

can obtain structural designs with crack-safe effects. The research in this paper fills 

the gap in local failure safety design. 
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