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Abstract

In this paper, a modern, reinforcement learning-based semi-active vibration control
strategy is presented. Three different reinforcement learning algorithms are used to
determine the control of the vibration process of a cantilever beam modeled as a sys-
tem of two rigid links connected by a rotational spring. The control is achieved by
blocking the connections between the links. This effect is achieved by introducing an
equivalent rotational viscous damper. The obtained control signals are compared with
the instantaneous optimal control, which greedily transfers the vibration energy from
one mode to another. The quality of the control signal obtained using reinforcement
learning confirms the ability of such algorithms to obtain results consistent with the
analytical solution.

Keywords: semi-active control, vibration mitigation, reinforcement learning, lock-
able joints, modal analysis, structural dynamics
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1 Introduction

Vibration attenuation in mechanical and civil engineering structures has been a topic
of intense research over the past few decades. Among various possible options, i.e.,
passive, active, and semi-active, the latter has recently attracted significant attention
due to its performance comparable to that of an active control system while removing
the requirement for an efficient power supply. Within such approaches, semi-actively
lockable joint constitutes an interesting solution [1]. The basic mechanism of opera-
tion of such joints allows them to operate in two opposite states, namely as pin joints
or rigid connections. Dynamic switching between these two states enables the transfer
of energy of vibration from low-frequency modes to high-frequency ones, at the same
time reducing the amplitudes of oscillations. Another promising application of such a
control strategy is enhancing of the energy harvesting process. Here, energy is to be
precisely transferred from the currently excited vibration modes to the targeted one. It
allows for the operation of the attached energy harvester under resonance conditions
for wide-band or random external excitations.

Prior to the application of the lockable joints for structural vibration reduction, one
has to select an appropriate control strategy. Traditionally, researchers used various
strategies derived from classical control theory, such as Lyapunov switching control or
linear quadratic regulator. These control strategies were successfully applied not only
to the stabilization of linearly vibrating systems, but also nonlinear ones like underac-
tuated robotic arms [2]. However, application of control strategies based on optimal
control theory often requires solving complex differential equations. Therefore, nowa-
days, the machine learning approaches are more frequently chosen by researchers [3].
One such approach, particularly useful in solving control problems, is reinforcement
learning (RL), described in the seminal book by Sutton and Barto [4]. RL allows to
avoid finding analytical conditions of optimality and seeks the optimal solution in a
trial and error manner. Moreover, as it was shown in a paper by Seyyedabbasi [5]
on the problem of localizing mobile sensor nodes, RL-based algorithms explore the
search space for optimal solution in effective way trying to find global optimum.

In this study, we investigate the possibility of applying reinforcement learning for
semi-active control of a reconfigurable beam structure equipped with a semi-active
joint. The goal of the RL agent is to find a sequence of switches for the state of
the joint, allowing the transfer of vibration energy from one mode shape to the other.
Three different algorithms of reinforcement learning have been used, namely Prox-
imal Policy Optimization (PPO) [9], Advantage Actor-Critic (A2C) [6], and Deep
Q-Network (DQN) [7, 8] . Additionally, the results obtained by the algorithms men-
tioned above have been compared with the solution obtained by Instantaneous Optimal
Control.

2
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Figure 1: Considered structure equipped with lockable joint: (a) scheme of the struc-
ture including the locking effect represented by the pair of self-equilibrated
moments, (b) rotational displacements, and (c) rotational viscous damper
(with large damping factor) representing locking effect

2 Methods

2.1 Dynamics of the structure under investigation

2.1.1 Dynamic behaviour of a reconfigurable system

The controlled structure consists of two ideally rigid rods of mass m and length l,
which are connected by rotational springs as shown in Figure-1a. The structure is
equipped with a semi-actively controlled, lockable joint that changes its structural
properties depending on the joint’s state (locked or unlocked). The locking effect
is represented by the pair of self-equilibrated bending moments keeping the connec-
tion rigid. When the joint is unlocked, then f(t) = 0, allowing free relative rotation
between the adjacent rods. Motion of the structure is described by two rotational
displacements q1(t) and q2(t) as shown in Figure 1b.

It is assumed that the transient time of the locking/unlocking of the joint is negli-
gibly short, and the joint is fully locked or fully unlocked in its steady state. Taking
into account these assumptions, the moment f(t) transmitted by the lockable joint can
be described using a switchable viscous damper as shown in Figure 1c. Then, this
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moment is represented by the formula:

f(t) = − cmaxu(t)︸ ︷︷ ︸
c(t)

(q̇1(t)− q̇2(t)) , (1)

where: cmax is large constant damping factor, u(t) ∈ {0, 1} is control signal taking
value of 0 when the joint is unlocked (then also f(t) = 0) or value of 1 when the
joint is locked. A sufficiently large cmax allows for representing the joint as a rigid
connection when locked, without providing any significant damping to the system.

It is assumed that the system is undamped (except for negligible damping provided
by the viscous joint model) and that vibration has small amplitudes. For these assump-
tions, the motion of the considered structure is described by the equation of motion
below. {

Mq̈(t) + u(t)C̃q̇(t) +Kq(t) = d(t)

q(0) = q0, q̇(0) = q̇0

(2)

where:

M = ml2
[
4/3 1/2
1/2 1/3

]
, K = k

[
2 −1
−1 1

]
,

are mass and inertia matrices, respectively, q(t) =
[
q1(t) q2(t)

]T,

C̃ = cmax

[
1 −1
−1 1

]
is a matrix employing a viscous model of the lockable joint, which couples rotational
degrees of freedom (DOFs) when u(t) = 1, and d(t) is vector of external forces.

2.1.2 Vibration modes and modal energy transfer

Aiming at the investigation of the transfer of energy between vibration modes, the
structural motion is to be expressed in modal coordinates η(t). They are related to
rotational displacements by the following transformation:

q(t) = Φη(t). (3)

Matrix Φ collects structure modeshapes: Φ =
[
ϕ(1) ϕ(2)

]
. They relate to the eigen-

value problem for the joint in the unlocked state:(
K− ω2M

)
ϕ = 0, (4)

where ω is the natural frequency.
The considered structure has 2 DOFs, hence it has two vibration modes which are

depicted in Figure 2.
Substituting Equation (3) into (2) and left-multiplying by transpose of Φ the fol-

lowing modal equation of motion is obtained:

η̈(t) + u(t)Γ̃η̇(t) +Ω2η(t) = ΦTd(t), (5)
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(a) ω(1) = 41.3 rad/s, ϕ
(1)
1 = −0.556 rad, ϕ

(1)
2 = −0.734 rad

(b) ω(2) = 274.7 rad/s, ϕ
(2)
1 = −1.185 rad, ϕ

(2)
2 = 2.514 rad

Figure 2: Vibration modes of the considered structure

where: Ω2 = diag(ω(1)2, ω(2)2) and Γ̃ = ΦTC̃Φ is matrix representing the locking
effect in modal coordinates. This matrix is not diagonal, hence it is responsible for
modal coupling between vibration modes obtained for the joint in the unlocked state.
It results in the energy exchange between vibration modes.

The modal basis corresponding to the unlocked joint is selected because locking
of the joint imposes a kinematic constraint (softened for the viscous model, but for
large cmax, the constraint is approximated well) and effectively removes one rotational
DOF. Thus, the modal basis obtained for the locked joint is insufficient to describe
the whole state of the system (in this case, we would have a single-degree-of-freedom
system).

Mechanical energy of the structure is the sum of the energies related to particular
vibration modes (namely: modal energies), according to the equation below.

E(t) =
1

2
η̇T(t)ΦTMΦ︸ ︷︷ ︸

I

η̇(t) +
1

2
ηT(t)ΦTKΦ︸ ︷︷ ︸

Ω2

η(t) =

=
2∑

i=1

1

2

(
η̇2i (t) + ω(i)2η2i (t)

)
=

2∑
i=1

Ei(t).

(6)

Due to the off-diagonal elements in matrix Γ̃, one particular energy can increase
at the expense of the other one. Due to the fact that a locked joint does not perform
any work over the structure, the total balance of increments and decrements of the
modal energies is zero. Hence, the remainder of this study is devoted to an RL-based
algorithm that locks or unlocks the joint at suitable time instants, thereby providing
an efficient transfer of energy to the preselected vibration mode. The exception when
the joint can dissipate the energy is an inelastic collision occurring if the joint is being
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locked when rotational velocities are different: q̇1(t) ̸= q̇2(t). The algorithm should
avoid such a jerking of the structure.

2.2 Reinforcement learning-based semi-active control

2.2.1 Semi-active control in the form of a Markov Decision Process

Prior application of reinforcement learning for semi-active control of reconfigurable
structure described in previous sections, it is convenient to represent our problem in
the form of the sequential process known as the Markov Decision Process (MDP) [4].
A finite MDP consists of:

• Finite set of states S, with subset of terminal states S̄ ⊂ S

• Finite set of actions A

• Reward function R : S × A× S → R

• State transition probability function T : S × A× S → [0, 1] such that

∀s ∈ S, a ∈ A :
∑
s′∈S

T (s, a, s′) = 1

• Initial state distribution µ : S → [0, 1] such that∑
s∈S

µ(s) = 1 and∀s ∈ S̄ : µ(s) = 0

Figure 3: Visualization of MDP framework

The above formulas represent a general probabilistic MDP, which starts in an initial
state s0 ∈ S, which is sampled from µ. Then, at time t, the agent observes the current
state st ∈ S of the system and chooses an action at ∈ A with probability given by
its policy, π(at|st), which is conditioned on the state. Next, given the state st and
action at, the MDP transitions into a next state st+1 ∈ S with probability given by
T (st, at, st+1), and the agent receives a reward rt = R(st, at, st+1). This probability
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can be written as T (st+1|st, at) to emphasize that it is conditioned on the state-action
pair st, at. Finally, these steps are repeated until the process reaches a terminal state
st ∈ S̄ or after completing a maximum number of N time steps. Each repetition of
this process is called an episode.

In this study, however, we apply deterministic equations of motion under specified
initial conditions. As a result, the state transition probability function is simply a set
of first-order differential equations that describe the dynamics of the system in a state
space.

2.2.2 Environment definition and experiments setup

For the 2-rod semi-active control problem investigated in this study, we defined our
MDP environment as follows.

Action space - we consider a single-valued action ut. At every time step, it takes
one of two discrete values {0, 1}, where 1 represents a locked joint between the rods
and 0 implies the elements moving freely.

Observation space - the observation vector consists of 7 components, which rep-
resent the full state of the environment. Variables include:

• q1, q2 are continuous variables for rotational displacement of both rods (2),

• q̇1, q̇ are continuous variables for rotational velocities of both rods (2),

• q̈1, q̈ are continuous variables for rotational accelerations of both rods (2),

• at−1 is an additional discrete variable of the agent’s previous action (1).

Observation variables are standardized to improve their numerical properties and
to minimize the impact of outliers. Examples of such extreme values are large ac-
celeration peaks present during locking of the joint when the rotational velocities are
different q̇1(t) ̸= q̇1(t). It results in the structure jerking. The standardization formula
looks as follows:

xstand = min (max (
xoriginal

max
1,...,T

xa=0,t

,−2), 2) (7)

where xoriginal is the value to be standardized, T is the number of simulation steps,
and max

1,...,T
xa=0,t is the maximal value registered during the freely moving rods episode.

Agent’s previous action, as a discrete action, is not standardized.

Initial and terminal states - we consider a fixed initial state, that is, the system dis-
placement in the second vibration mode with no initial velocity. The terminal state is
driven by overall simulation steps and is limited to 400 of 0.01s steps.

Reward formula - we use an energy-based formula as a reward granted in every
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simulation step of the environment. The reward function is equal to the ratio of the
first modal energy to the total initial mechanical energy of the system:

rt = E1(t)/(E1(0) + E2(0)) (8)

Under the above assumptions, the goal of the RL agent is to find a switching se-
quence ut that takes the system from oscillation in one modal form to another. The
reward definition encourages the agent to transfer energy from the initial vibration
mode to the targeted one as quickly as possible. The reward defined above is expected
to avoid jerking of the structure and limit excess damping, but does not directly ad-
dress the potential chattering problem.

Theoretically, such a goal could be achieved using a full enumeration process of
the search space, as shown in Figure 4. However, even moderate discretization of
the process involving N time steps would result in an enormous number of 2N possi-
ble combinations, which makes this approach infeasible for any practical engineering
problem.

Figure 4: Decision tree of the sequence of switching process

2.2.3 Algorithms and experiment setup

We used popular discrete action space algorithms implementations from the Stable-
Baselines3 benchmark algorithms library. DQN [7, 8] is representative of off-policy
learning. A2C [6], PPO [9] are on-policy algorithms. We compared the performance
of these algorithms in our environment, considering different discount factor.

Discount factor (γ) is one of the most essential parameters in RL. It represents how
prone the agent is to postpone immediate rewards to gain higher future rewards. Dis-
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count factor close to zero represents a myopic agent that considers only the nearest re-
wards. On the other hand, high discount factor considers the long-term consequences
of the actions, but sometimes struggles to converge as current expectations of future
rewards might be mistaken [4]. The current expected return of future rewards Gt is
represented by the formula:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

(γkRt+k+1) (9)

Where γ is the discount factor, t is the current time step, and k is the future rewards
time horizon. In infinite k time horizon problems, discount factor has to be below 1
to avoid the summation of infinitely many future rewards. Depending on the environ-
ment, the value of γ coefficient is typically around 0.9 to 0.99. Our simulation has
a fixed time horizon of 400 decision steps; therefore, we can consider unit discount
factor, which tries to find a global solution to the problem. In this energy transfer prob-
lem, discount factor of 0 represents an agent that focuses only on the instant reward,
which is similar to the solution proposed by [1]. We keep learning rates, exploration
formulas, and other parameters as suggested in the Stable-Baselines3 library.

For each algorithm setup we run 10 experiments with different initial random gen-
erator seed. Each run was trained for 1,000 episodes, consisting of 400 decision steps
each. Every episode was evaluated. We gathered and compared the results of the best
episode from each experiment.

3 Results

Table 1 summarizes the best control found for each of 10 runs for A2C, DQN, and
PPO algorithms and different discount factors. We analyze the stability of the results
by examining the minimum, maximum, average, and standard deviation of the values.
The best results in columns are bolded. The analytical solution proposed by [1] scored
304.36. The reward represents the share of the first modal energy of the total initial
mechanical energy for every 400 simulation steps; the total achievable reward could
vary from 0 to 400.

Algorithms using a discount factor of 0 achieved a better average score compared
to those with a far-sighted approach. Such an unintuitive results prove that simple
immediate control is, by default, better than heuristic search for the global optimum.
Usage of RL in this case limited the RL algorithms to simple next-state approximators
under a given discrete action.

Simple DQN appeared to be the most robust algorithm in this problem. It achieved
the highest average best result and the lowest standard deviation of the best results
among all 10 runs. The best solution found with the DQN algorithm and default
discount factor can be seen in Figure 5.

PPO was less stable in performance, but managed to discover the best strategy
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Experiments results
Algorithm γ coefficient Min Max Std Mean
A2C 0.0 73.09 210.62 58.51 137.42
A2C 0.99 (default) 73.09 183.33 35.39 87.62
A2C 1.0 25.57 75.3 15.12 68.56
DQN 0.0 262.11 298.2 11.66 281.45
DQN 0.99 (default) 227.78 294.85 23.69 269.48
DQN 1.0 235.59 289.94 20.14 264.46
PPO 0.0 198.65 304.18 37.67 267.25
PPO 0.99 (default) 73.09 286.14 68.0 209.61
PPO 1.0 73.09 241.85 64.2 156.79

Table 1: Comparison of sample algorithms with different discount factors

(a)

Figure 5: Solution found with DQN algorithm with default value of the discount factor

overall. It was very similar to one described in [1]. A comparison of both approaches
is shown in Figure 6.

Experiments based on the A2C algorithm yielded consistently worse solutions than
those of other algorithms in this problem. The runs typically got stuck in local max-
ima, which were related to blocking or unblocking the joint for the whole episode
without any changes in control. Typical behaviour can be seen in Figure 7.
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(a)

(b)

Figure 6: Comparison of the PPO best solution and analytical benchmark
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Figure 7: Typical solution found by A2C algorithms

4 Conclusions

This paper describes a possible application of the reinforcement learning algorithm in
the task of semi-active vibration control of a beam structure. A beam with two de-
grees of freedom, connected by rotational springs, is used as an illustrative example.
Three different reinforcement learning algorithms are analyzed, achieving results sim-
ilar to the analytical solution obtained by minimizing the instantaneous quality factor
describing the energy flow between the controlled modes. Visualization of the most
efficient RL-based control with the analytical one is presented in Figure 8. At the top
of the image is the beginning of the simulation. The black dot represents a locked
joint.

Although achieving comparable performance to the benchmark solution, RL usage
in this problem was limited to a simple next-state approximator. Experiments using
gamma other than zero typically had significantly worse performance, implying that
a simple greedy control might be sufficient for this problem. Heuristic search for a
global optimal solution didn’t bring any increase in the results. Possibly, RL-based
approaches might be more beneficial for the efficient control of complex systems.
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Figure 8: Time-lapse comparison of switching sequence obtained for analytical (LHS)
and the best one found by RL-based (RHS) approach.
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