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Abstract 
 

This paper presents a novel optimization framework for trusses that incorporates 

elasto-plastic material behavior and accounts for geometric nonlinearity to determine 

the optimal structural shape, thereby minimizing plastic deformations and material 

usage to ensure a safe and cost-effective design.  To achieve this objective and to 

guarantee reliable structural behavior, Geometrical and Material Nonlinear Analysis 

(GMNA) was performed using the Finite Element Method (FEM), and the 

complementary strain energy was calculated to evaluate the structure’s plastic 

performance. Due to the high computational demand of GMNA, a Neural Network-

Assisted Genetic Algorithm (NNAGA) was applied, which learns intelligently from 

the data generated during the iterative design process and significantly accelerates the 

convergence of the optimization. The proposed methodology was validated through a 

benchmark numerical example involving a 33-bar truss. The obtained results 

demonstrated the efficiency of the developed framework in minimizing plastic 

deformations while simultaneously reducing material usage, outperforming a 

conventional genetic algorithm (GA) in terms of effectiveness. 
 

Keywords: structural optimization, neural network, genetic algorithm, elasto-plastic 

design, large deformations, trusses. 
 

1  Introduction 
 

Steel trusses are widely used in construction for applications such as towers [1], 

bridges [2], and roofs [3]. Due to the complexity of these structures, the design process 
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must be carried out with care to ensure safe and reliable performance. Incorporating 

nonlinear effects—such as inelastic material behavior and large deformations—can 

contribute to a more accurate and thoughtful design [4–6]. In this context, plastic 

analysis offers valuable insights into complex structural responses, including post-

yield behavior, thereby enhancing overall safety. Applying such a methodology 

supports the development of robust designs and helps prevent catastrophic failures 

such as [7,8]. 
 

Plastic analysis of structures generally involves the characterization of inelastic 

deformations, which remain permanent even after unloading. To achieve this, various 

theoretical approaches have been proposed in the literature [9–14]. A subset of these 

methods is based on limiting plastic strains and residual displacements [15–17], which 

has contributed to the development of advanced computational design techniques that 

successfully address the optimization of discrete trusses [18–20]. Through numerical 

examples, these approaches have demonstrated the effectiveness of plastic analysis. 

However, accurately accounting for inelastic deformations often results in 

significantly increased computational demand due to the strongly nonlinear material 

behavior. 
 

In addition to plastic constitutive relation, other nonlinear effects such as large 

deformations [21–23] contribute to increased complexity in both optimization and 

computational effort. Consequently, to address these challenges more effectively, 

recent research has focused on combining various machine learning techniques with 

metaheuristic algorithms [24–27]. These studies typically aim to determine the 

optimal cross-sectional areas of individual bar members, framing the task as a size 

optimization problem. This approach aligns with the classical categorization of 

structural optimization, which also includes shape and topology optimization [28]. 
 

In this paper, a Neural Network-Assisted Genetic Algorithm (NNAGA) based 

optimization framework is proposed to determine the optimal shape of a truss by 

adjusting the predefined joint coordinates, with the aim of enhancing plastic 

performance while simultaneously reducing structural weight. This was achieved by 

incorporating Geometrical and Material Nonlinear Analysis (GMNA) using the Finite 

Element Method (FEM). The proposed approach was tested on a simply supported 

33-bar truss structure, and the results were compared to those obtained using a 

conventional Genetic Algorithm (GA) based optimization, thereby verifying its 

efficiency. The outcomes demonstrated the potential and effectiveness of the 

developed framework in achieving a safer and more cost-effective design by 

eliminating plastic deformations, reducing structural weight, and enhancing 

convergence through the integration of a Neural Network (NN). 
 

2  Elasto-plastic optimizations of trusses 
 

This section provides an overview of the elasto-plastic optimization approach applied 

to truss structures, with the aim of determining the optimal shape of the selected 

numerical example. In structural design, the primary objective is to maximize 

performance while minimizing material usage, thereby achieving a safe and 
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economically efficient configuration. Consequently, in the case of elasto-plastic truss 

optimization, plastic response must also be evaluated and controlled alongside weight 

reduction.  
 

To characterize the plastic behavior of the structure, the complementary strain 

energy of residual forces is utilized in this research. Previous studies have 

demonstrated that this concept can be effectively applied for this purpose through the 

development of advanced computational methods [29–33]. The complementary strain 

energy 𝑊𝑝 associated with residual forces is given by the following equation: 
 

 𝑊𝑝 =
1

2𝐸
∑

𝑙𝑖

𝐴𝑖
𝑁𝑖

𝑅2
≤ 𝑊𝑝0

𝑛
𝑖=1  where 𝑖 = 1, 2, 3, … . . , 𝑛 (1) 

 

where 𝑊𝑝0 is the limiting value of allowable complementary strain energy, 𝐸 

denotes the elastic modulus of the material, 𝑙𝑖 is the length of the 𝑖-th bar, and 𝐴𝑖 

represents its corresponding cross-sectional area. Furthermore, 𝑁𝑖
𝑅 is the residual 

force in the respective element, which, in the case of an applied load 𝑃0, can be 

expressed as the difference between the internal plastic force 𝑁𝑝𝑙 and the internal 

elastic force 𝑁𝑒𝑙, as follows: 
 

 𝑁𝑅 = 𝑁𝑝𝑙 − 𝑁𝑒𝑙 (2) 
 

where 
 

 𝑁𝑒𝑙 = 𝐹−1𝐺𝑇𝐾−1𝑃0 (3) 
 

Here, 𝐺 corresponds to the geometry matrix, 𝐾 to the stiffness matrix, and 𝐹 to the 

flexibility matrix. 
 

In the context of the complementary strain energy of residual forces, the shape 

optimization problem for elasto-plastic planar truss structures—characterized by 

nodal coordinates 𝑥𝑗 and 𝑦𝑗 and constructed with a uniform cross-sectional area 𝐴—

can be formulated as follows: 
 

 minimize:𝑓𝑖𝑡𝑛𝑒𝑠 = 𝑓(𝐺𝑠) + 𝑝1(𝑊𝑝) +  𝑝2(𝑃) (4a) 
 

where 
 

 𝑓(𝐺𝑠) =
𝜌 ∑ 𝐴𝑙𝑖

𝑛
𝑖=1

𝐺𝑠,0
; (4b) 

 

 𝑝1(𝑊𝑝) =
1

2𝐸
∑

𝑙𝑖
𝐴

𝑁𝑖
𝑅2𝑛

𝑖=1

𝑊𝑝0
; (4c) 

 

 𝑝2(𝑃) = 1 −
𝑃

𝑃0
; (4d) 

 

Subject to: 
 

 𝑥𝑗,0 + 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤ 𝑥𝑗,0 + 𝑥𝑚𝑎𝑥; (4e) 
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 𝑦𝑗,0 + 𝑦𝑚𝑖𝑛 ≤ 𝑦𝑗 ≤ 𝑦𝑗,0 + 𝑦𝑚𝑎𝑥; (4f) 
 

 𝑁𝑒𝑙 = 𝐹−1𝐺𝑇𝐾−1𝑃0; (4g) 
 

 𝑁𝑝𝑙̅̅ ̅̅ ̅ ≤ 𝑁𝑝𝑙 ≤ 𝑁𝑝𝑙̅̅ ̅̅ ̅; (4h) 
 

As presented in Equation (4a), the fitness function consists of three main 

components. Equation (4b) represents the ratio of the structural weight 𝐺𝑠 to the 

maximum allowable weight 𝐺𝑠,0, ensuring that an economically efficient 

configuration is achieved. Additionally, Equation (4c) serves as the first penalty 

function, associated with the calculated complementary strain energy. In the case of 

fully elastic behavior, 𝑝(𝑊0) remains zero; thus, weight minimization becomes the 

sole objective during the optimization process. Finally, Equation (4d) introduces the 

second penalty function, where 𝑃0 is the predefined load value, and 𝑃 is the actual 

load reached during the loading history. This term enforces that the structural load-

bearing capacity satisfies the design requirement, such that the achieved load 𝑃 equals 

the specified load 𝑃0, in contrast; otherwise, 𝑝(𝑃) becomes nonzero. 
 

Furthermore, Equation (4e) and Equation (4f) defines the design domain used to 

adjust the specified joint coordinates 𝑥𝑗 and 𝑦𝑗 thereby determining the optimal shape 

of the structure. Here, 𝑥𝑗,0 and 𝑦𝑗,0 denote the initial coordinates of the 𝑗-th node. 

During the optimization process, these coordinates are allowed to vary within the 

range [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] in the horizontal direction and [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] in the vertical 

direction. Finally, Equation (4g) defines the calculation of the elastic internal forces, 

while Equation (4h) represents the plastic limit condition, where 𝑁𝑝𝑙̅̅ ̅̅ ̅ denotes the 

ultimate plastic load capacity. 
 

The problem formulation presented through Equations (4a)–(4h) directs the 

optimization toward solutions that minimize plastic deformations, while ensuring that 

the structure withstands the required load capacity and achieves a reduction in weight. 

In conclusion, the two penalty functions enforce that the structural performance 

requirements are met, while the objective term 𝑓(𝐺𝑠) promotes an economically 

efficient design by adjusting the nodal coordinates 𝑥𝑗 and 𝑦𝑗 within their predefined 

ranges.  
 

3  Neural Network-Assisted Genetic Algorithm (NNAGA) 

framework 
 

In this section, the main components of the developed optimization framework are 

presented. The proposed method integrates a Neural Network (NN) into a Genetic 

Algorithm (GA) to improve convergence and increase the probability of finding the 

global optimum solution. The implementation was carried out using the PYTHON 

programming language and ABAQUS [34] software, and incorporates the 

formulations defined in Equations (4a)–(4h). 
 

The GA is a widely used metaheuristic optimization technique, commonly applied 

to various practical engineering problems [35]. Inspired by the principles of natural 
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evolution, this method operates by evaluating a population of potential candidate 

solutions, where the fitness value determines the quality and suitability of each 

solution. During the optimization process, the genetic operators—selection, 

crossover, and mutation—are responsible for guiding the search and maintaining 

convergence from generation to generation in an iterative manner. Over the years, GA 

has proven its efficiency in solving a wide range of problems within the field of civil 

engineering [36–39]. 
 

The other employed technique, the NN, is a computational model designed to 

capture nonlinear relationships between input and output data, mimicking the function 

of the human neural system. Its fundamental unit is the neuron, in which the activation 

function introduces nonlinearity into the model. In a fully connected NN, neurons are 

hierarchically organized in a layered structure, where each neuron in one layer is 

connected to every neuron in the next. The outputs of lower-layer neurons undergo 

successive transformations as they propagate through the network, ultimately 

reaching the upper layers to generate the final output. This algorithm has demonstrated 

its efficiency across numerous applications in the field of civil engineering [40]. 
 

The fundamental concept of the developed methodology is to enhance the 

performance of the GA by incorporating a fully connected NN to generate a new 

population based on data from previous generations. This introduces an additional 

step into the standard GA workflow, wherein a portion of the new population is 

produced using predictions from the NN. This process consists of three key 

subcomponents: 
 

a) Data preparation: In this step, data generated during the GA operation is collected. 

The optimized nodal coordinates [𝑥𝑗, 𝑦𝑗] are used as inputs for the NN, while the 

corresponding penalty function values 𝑝1(𝑊𝑝) and 𝑝2(𝑃) serve as outputs. 

Subsequently, the input values are normalized based on their maximum (𝑥𝑗,𝑚𝑎𝑥, 

𝑦𝑗,𝑚𝑎𝑥) and minimum (𝑥𝑗,𝑚𝑖𝑛, 𝑦𝑗,𝑚𝑖𝑛) values. This prepared data is then used to 

train NN. 
 

b) Create and train NN: This step involves constructing the NN architecture based 

on predefined hyperparameters, including the number of hidden layers, the 

number of neurons per layer, the type of activation function, and the learning rate. 

Once the structure is defined, the training process begins using the 

backpropagation algorithm [41]. During training, the error between the predicted 

and actual output values is evaluated using the Mean Squared Error (MSE) loss 

function. The outcome of this step is a trained NN capable of predicting the values 

of 𝑝1(𝑊𝑝) and 𝑝2(𝑃) with the required accuracy. 
 

c) Sub-optimization with NN using genetic operators: The final step is an 

optimization process based on the principles of GA and its genetic operators. In 

this phase, the trained NN is used to evaluate the penalty values 𝑝1(𝑊𝑝) and 𝑝2(𝑃) 

with respect to the initialized coordinates, while the objective function 𝑓(𝐺𝑠) is 

calculated separately. Together, these components establish the final fitness value. 

This procedure is repeated until the final generation is reached, and the best 
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estimated configurations are selected to form a portion of the next generation —

set to 50% in this study, but adaptable depending on the specific requirements— 

in the global optimization process. Due to the high computational efficiency of the 

NN, larger populations and more generations can be explored, allowing the 

prediction of significantly more optimal solutions. 
 

Integrating these components into the GA enhances the overall performance of the 

framework, enabling better solutions to be obtained in fewer generations and thereby 

improving convergence. The basic operation and key components of the NNAGA are 

illustrated in Figure 1. Additionally, the properties listed in Table 1 are used in this 

research during the shape optimization process. 
 

 
Figure 1: Operation of the developed framework with Neural Network-Assisted 

Genetic Algorithm (NNAGA). 
 

Algorithm Parameter Values 

Genetic Algorithm Number of generations 20 

Population size 100 

Uniform crossover probability 0.7 

Mutation probability 0.1 − 0.9 

Tournament selection size 2 

Neural Network Hidden layers with neuron numbers [14, 18, 9] 

Activation function Sigmoid 

Learning rate 0.01 

Table 1: Utilized Parameters of the GA and the NN. 
 

4  Numerical example 
 

This section presents a numerical example involving a simply supported 33-bar truss 

structure, as shown in Figure 2, where the range of possible nodal coordinates during 

the optimization is also illustrated. The nodes are allowed to vary within ±300𝑚𝑚 in 

both the horizontal and vertical directions relative to their initial positions. The content 

is organized into two main parts: first, the introduction of the FE model developed for 
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the analysis; and second, the presentation and discussion of the optimization results. 

Furthermore, the performance of the NNAGA is evaluated in comparison to the 

conventional GA, highlighting the advantages of the integrated approach. 
 

 
Figure 2: The initial configuration of the numerical example. 

 

4.1 Created finite element model 
 

To carry out the optimization process, the finite element (FE) model was constructed 

using ABAQUS software. During the simulations Geometrical and Material 

Nonlinear Analysis (GMNA) was performed to calculate the 𝑊𝑝 value with respect to 

nodal configurations. 
 

The FE model was created using B31 beam elements with a general mesh size of 

100mm. The cross-section of all individual bars was uniformly defined as circular 

hollow sections, with a diameter of 150mm and a wall thickness of 3mm, resulting 

in a cross-sectional area of 𝐴 = 1385.44mm2. The developed FE model is shown in 

Figure 3, along with the applied boundary and loading conditions, where the 

magnitude of the nodal forces is 𝑃0 = 42.4kN.  
 

 
Figure 3: The developed FE model used as the initial configuration for optimization. 
 

During the simulation, an elasto-plastic material model for steel was applied, 

incorporating an isotropic hardening rule. The material properties used correspond to 

the nominal values of S235 steel grade, as defined by Eurocode [42]. Considering the 

density of steel and the applied cross-sectional dimensions, the total weight of the 

initial configuration was calculated as 𝐺𝑠,𝑖𝑛𝑖𝑡 = 392.42kg. 
 

After the creation of the FE model the GMNA was conducted and the 

complementary strain value of residual forces was calculated with respect of the 

boundary and load conditions, which was 𝑊𝑝,𝑖𝑛𝑖𝑡 = 599.66Nmm. 
 

 

4.2 Optimization results and discussion 

Ux=0 

Uy=0 

Uz=0

Ux=0 

Uy=0 

Uz=0

P0
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During the optimization process, the values 𝑊𝑝,𝑖𝑛𝑖𝑡 and 𝐺𝑠,𝑖𝑛𝑖𝑡 corresponding to the 

initial configuration, were used as limiting thresholds, defined as 𝑊𝑝0 = 𝑊𝑝,𝑖𝑛𝑖𝑡 and 

𝐺𝑠,0 = 𝐺𝑠,𝑖𝑛𝑖𝑡. This implies that the primary objective of the optimization is to 

determine a solution where the plastic deformations remain below 𝑊𝑝,𝑖𝑛𝑖𝑡, and the 

total structural weight is less than 𝐺𝑠,𝑖𝑛𝑖𝑡. 
 

To evaluate the effectiveness of the developed optimization framework, five 

independent runs were conducted. The results obtained using the NNAGA are 

presented and compared with those from the conventional GA-based design in Figure 

4. Furthermore, the fitness values at the end of the final generation are summarized in 

Table 2. 
 

 
Figure 4: Optimization history of structural weight, highlighting the best and worst 

cases among 5 independent runs based on fitness values. The shaded region 

represents the optimization curves of the remaining runs. 
 

Run 
GA NNAGA 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐺𝑠 (kg) 𝑊𝑝 (Nmm) 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐺𝑠 (kg) 𝑊𝑝 (Nmm) 

1 0.8912 349.71 0.000014 0.8894 349.02 0.000000 

2 0.8904 349.42 0.000013 0.8899 349.20 0.000000 

3 0.9001 353.23 0.000000 0.8894 349.02 0.000000 

4 0.8910 349.66 0.000000 0.8899 349.20 0.000000 

5 0.8913 349.78 0.000000 0.8895 349.08 0.000000 

Mean 0.8928 350.36 0.000005 0.8896 349.11 0.000000 

Std Dev 0.0041 1.61 0.000007 0.0002 0.09 0.000000 

Table 2: Summary of optimization results and comparative analysis of GA and 

NNAGA across five independent runs. 
 

The results presented in Figure 4 and Table 2 indicate that the NNAGA 

outperforms the conventional GA, especially in terms of optimization convergence. 

As shown in Figure 4, NNAGA consistently finds an optimal solution across all cases 
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by approximately the 6𝑡ℎ generation, whereas the GA begins to stabilize only around 

the 13𝑡ℎ generation. Furthermore, the fitness values—and consequently the structural 

weights and corresponding 𝑊𝑝 values—are better in every independent run when 

using NNAGA, with significantly lower standard deviation. These findings suggest 

that NNAGA can reach the optimal solution in substantially fewer generations, which 

overall leads to much greater computational efficiency, as fewer configurations need 

to be evaluated to identify the ideal one.  
 

Additionally, it should be noted that, compared to the initial configuration, the use 

of the developed framework—whether with GA or NNAGA—results in significant 

material savings and a reduction in plastic deformations, highlighting the 

effectiveness of the proposed methodology. These results are summarized in Table 3, 

and a comparison between the overall best solution obtained using NNAGA and the 

initial configuration is illustrated in Figure 5. Notably, across all examined cases, the 

structures with optimized shapes remained entirely within the elastic range by the end 

of the design process, while achieving approximately 10% material savings. 
 

Configuration 𝐺𝑠 (kg) 
𝐺𝑠

𝐺𝑠,𝑖𝑛𝑖𝑡
⁄  𝑊𝑝 (Nmm) 

𝑊𝑝
𝑊𝑝,𝑖𝑛𝑖𝑡

⁄  

INITIAL 392.42 100.00% 599.6600 100.00% 

BEST - GA 349.42 89.04% 0.000013 0.00% 

WORTS - GA 353.23 90.01% 0.000000 0.00% 

BEST - NNAGA 349.02 88.94% 0.000000 0.00% 

WORST - NNAGA 349.20 88.99% 0.000000 0.00% 

Table 3: Comparison between the initial configuration and the optimal solutions. 
 

a)  

b)  

Figure 5: 𝑊𝑝 values of a) the initial configuration and b) the overall best solution 

obtained using NNAGA. 
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5  Conclusions 
 

In this study, a novel framework is presented for optimizing the shape of elasto-plastic 

trusses by accounting for large deformation effects through geometrically nonlinear 

analysis and employing a Neural Network-Assisted Genetic Algorithm (NNAGA) to 

achieve safe and economically efficient designs. In the proposed methodology, the 

complementary strain energy of residual forces is calculated to evaluate the plastic 

performance. This is accomplished by performing Geometrical and Material 

Nonlinear Analysis (GMNA) for each individual configuration using the Finite 

Element Method (FEM). To further enhance the efficiency of the optimization 

process, a Neural Network (NN) is integrated to intelligently learn from the data 

generated by the Genetic Algorithm (GA), thereby accelerating convergence and 

improving the quality of the obtained solutions. 
 

The developed framework was validated on a benchmark problem involving a 

simply supported 33-bar truss structure. The results demonstrated that the proposed 

approach significantly reduced plastic deformations and achieved notable material 

savings compared to the initial configuration. Remarkably, the optimized structure 

remained entirely within the elastic range while achieving an approximate 10% 

weight reduction solely through shape optimization. Furthermore, the NNAGA 

exhibited improved convergence behavior and identified superior solutions in fewer 

generations compared to the conventional GA, contributing to a more computationally 

efficient optimization process. 
 

The outcomes of this research highlight the potential of the proposed framework 

and underscore the significance of incorporating elasto-plastic analysis into advanced 

truss design. By leveraging these techniques, it becomes possible to simultaneously 

enhance structural safety and economic efficiency by achieving better performance 

with reduced material usage. 
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