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Abstract 
 

This study introduces a novel enhancement to the Teaching–Learning-Based 

Optimization (TLBO) algorithm for structural size optimization of trusses by 

embedding geometrically nonlinear analysis into the design evaluation process. While 

traditional TLBO-based truss optimizations typically rely on linear finite element 

analysis, the proposed framework integrates a Newton–Raphson solver to more 

accurately capture large-displacement behaviour. This modification allows for a more 

realistic representation of structural response, especially in flexible or slender truss 

systems. The optimization aims to minimize the total structural weight by adjusting 

the cross-sectional areas of the truss members, subject to stress and displacement 

constraints. Constraint violations are addressed using a quadratic penalty formulation. 

The classical 10-bar truss problem is employed as a benchmark to validate the method. 

The results demonstrate that incorporating geometric nonlinearity within the TLBO 

framework significantly improves the robustness and realism of the optimized 

designs. This enhanced approach provides a practical alternative for realistic truss 

design without changing the underlying topology. 

Keywords: geometric nonlinearity, TLBO, metaheuristics algorithms, truss 

optimization, nonlinear finite element analysis, Newton–Raphson. 
 

1  Introduction 
 

Structural optimization has become an indispensable tool in modern engineering 

design, enabling the development of structures that are not only safe and reliable but 
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also economical and sustainable. By systematically refining structural parameters, 

engineers can achieve designs that optimally balance performance requirements—

such as strength, stiffness, and stability—against constraints related to material 

consumption, construction cost, and serviceability [1,2]. Over the past few decades, 

this field has evolved significantly, driven by both theoretical advances and 

computational capabilities. 

Structural optimization encompasses three main categories: size, shape, and 

topology optimization. Size optimization refers to the process of determining the 

optimal cross-sectional areas or dimensions of structural members to minimize an 

objective function. Shape optimization focuses on determining optimal boundary 

geometries to minimize mass while meeting structural constraints. Topology 

optimization [3,4], on the other hand, seeks the optimal material distribution within a 

design domain. Rozvany et al. [5] emphasized the importance of layout or topology 

optimization as an economically rewarding design task, highlighting both exact 

analytical methods and approximate discretized approaches. Habashneh and Rad [6] 

developed a topology optimization framework that integrates reliability-based design 

with geometrically nonlinear analysis accounting for imperfections. Furthermore, Hsu 

[7] provided a comprehensive overview of structural shape optimization, highlighting 

the latest advancements in the field.  

Over the years, a broad spectrum of optimization algorithms has been developed 

to solve these problem classes. Gradient-based methods, while computationally 

efficient for well-posed, differentiable problems, often struggle with complex, non-

convex design spaces and can become trapped in local minima. To overcome these 

limitations, numerous metaheuristic algorithms have been introduced, including 

genetic algorithms, simulated annealing, particle-based swarms, and differential 

evolution are commonly applied in structural design optimization, especially when 

dealing with nonlinear and constrained optimization spaces, all of which have 

demonstrated robustness in handling nonlinear, multi-modal, and constrained 

problems [8–14]. 

Within this group of metaheuristics, the Teaching–Learning-Based Optimization 

(TLBO) algorithm, first formulated by Rao et al. [15], has gained considerable 

attention due to its simple structure, parameter-free nature, and effective convergence 

characteristics. Inspired by classroom dynamics, TLBO simulates the teacher’s role 

in enhancing student performance, with learners iteratively improving their solutions 

through teacher-guided and peer-interactive phases. In structural applications, TLBO 

has proven to be a competitive alternative to traditional evolutionary algorithms. 

Camp and Farshchin [16] demonstrated the effectiveness of TLBO in optimizing 

three-dimensional trusses using a modified version of the algorithm. Other studies 

have extended TLBO for use in multi-objective optimization of structures, stress-

based design, and vibration control [17,18]. 

Despite its widespread adoption, most existing TLBO-based structural 

optimization frameworks rely on linear finite element analysis (FEA) to evaluate 

design performance. While this simplification reduces computational burden, it fails 

to capture the true structural behavior under conditions involving large displacements 

or rotations. In practical applications—such as long-span, slender, or flexible truss 

systems—geometric nonlinearity can significantly influence internal force 
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distributions and global stability. Neglecting these effects may lead to suboptimal or 

even unsafe designs. 

Motivated by this limitation, the present study proposes an enhanced TLBO 

framework that incorporates geometrically nonlinear finite element analysis into the 

optimization loop , hereafter referred to as GNTLBO. A Newton–Raphson-based 

solver is embedded within the TLBO evaluation phase, enabling the accurate 

assessment of design candidates under large-displacement conditions. This 

integration ensures that the algorithm produces solutions that are not only optimal in 

terms of weight but also realistic in their structural performance. Unlike conventional 

approaches, the proposed method enhances the physical fidelity of the optimization 

process without altering the underlying topology. 

The effectiveness of the presented approach was examined through the classical 

10-bar space truss problem is used as a benchmark. This widely studied problem 

provides a standardized basis for evaluating optimization algorithms and allows for 

direct comparison with traditional TLBO implementations. The goal is to minimize 

the total structural weight by optimizing the cross-sectional areas of the truss members 

while satisfying allowable stress and displacement constraints. Constraint violations 

are penalized using a quadratic penalty function, and all computations are performed 

in MATLAB. 
 

2  Methods 
 

The focus of this research is to optimize the truss member areas in order to minimize 

the total structural weight, subject to stress and displacement constraints. The 

structural layout, including node coordinates and element connectivity, is assumed to 

be fixed throughout the optimization process, i.e., only size variables are considered. 

This approach follows the classical size optimization framework adopted in earlier 

studies such as Camp and Farshchin [16], but introduces a significant enhancement 

through the use of geometrically nonlinear finite element analysis: 

 

 𝐀 = [𝐴₁, 𝐴₂, ..., 𝐴i] (1) 

 

with Aᵢ representing the cross-sectional area of the i-th truss element. The total weight 

W of the structure can be calculated as: 

 

 𝑊(𝐀) = ∑ⁿᵢ₌₁ ρᵢ 𝐴ᵢ 𝐿ᵢ (2) 

 

In this expression, ρᵢ stands for the material’s density and Lᵢ denotes the undeformed 

length of the i-th element. The formulation also includes the following constraints: 

 

 σᵢ = |𝐹ᵢ| / 𝐴ᵢ ≤ σₐₗₗₒ (3) 

 |𝑢ⱼ| ≤ 𝑢ₘₐₓ (4) 

 

The stress constraint ensures that the axial stress in each truss member remains within 

the allowable limit specified by the material properties. For each member i, the axial 

stress σᵢ is computed as the absolute value of the internal axial force 𝐹ᵢ  divided by the 
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corresponding cross-sectional area 𝐴ᵢ. This value must not exceed the allowable stress 

σₐₗₗₒ, ensuring structural safety under the applied loading conditions. In addition to 

stress constraints, displacement constraints are imposed to maintain serviceability and 

limit excessive deflections. Specifically, the magnitude of displacement 𝑢ⱼ at each 

degree of freedom j must remain below a prescribed maximum allowable 

displacement 𝑢ₘₐₓ. These constraints collectively ensure that the optimized truss 

design is both structurally sound and serviceable. To enforce the constraints, a 

penalty-based approach is adopted as: 

 

 𝑓ₚ(𝐀) = 𝑊(𝐀) × (1 + Pσ + Pᵤ)² (5) 

 

The optimization framework developed in this study is based on the Teaching–

Learning-Based Optimization (TLBO) algorithm introduced by Rao et al. [15], which 

simulates the interaction between a teacher and learners in a classroom. The algorithm 

comprises two main phases: the teaching phase, where learners gain knowledge from 

the teacher, and the learning phase, where learners interact and share information to 

improve their understanding. 

During the teacher phase, every learner attempts to improve their knowledge based 

on the gap between the teacher's performance and the current class average. 

Mathematically, this process is governed by 

 

 Xₖ⁽ⁿᵉʷ⁾(ⱼ) = Xₖ⁽ᵒˡᵈ⁾(ⱼ) + D(ⱼ) (6) 

 D(ⱼ) = TF · r · (T(ⱼ) - M(ⱼ)) (7) 

 

Here, Xₖ(ⱼ) corresponds to the j-th variable of the k-th solution, with T(ⱼ) indicating 

the teacher’s value and M(ⱼ) the population average. The teaching factor TF , often set 

to 1 or 2, scales the influence of the teacher, while r is a uniformly distributed random 

number in the range [0,1]. The computed update direction D(ⱼ) encourages each 

learner to move toward the teacher’s position. 

In the original TLBO formulation, the mean M(j) is calculated as a simple average 

across the population. However, to improve search efficiency, a fitness-weighted 

mean is sometimes used, which emphasizes the influence of high-performing 

individuals: 

 

 M(ⱼ) = (∑ₖ₌₁ⁿ Fₖ · Xₖ(ⱼ)) / (∑ₖ₌₁ⁿ Fₖ) (8) 

 

The Learner Phase of the TLBO algorithm simulates the collaborative learning 

process among students. In this phase, each learner attempts to enhance their 

performance by interacting with another randomly selected learner. The underlying 

principle is that learners can learn from each other, particularly when one has better 

performance. The update rule depends on a fitness comparison between two randomly 

selected individuals, say p and q. If learner p performs better than learner q, the new 

design is updated by moving p further in the direction away from q; otherwise, p 

moves toward q. This process is mathematically expressed as: 
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 Xₚ⁽ⁿᵉʷ⁾(ⱼ) =  Xₚ(ⱼ) + r · (Xₚ(ⱼ) - Xq(ⱼ)),    if Fₚ < Fq (9) 

 Xₚ⁽ⁿᵉʷ⁾(ⱼ) =  Xₚ(ⱼ) + r · (Xq(ⱼ) - Xₚ(ⱼ)),    otherwise (10) 

 

 

where r is a stochastic value randomly sampled from the interval [0,1], and Fₚ, Fq are 

the objective values (fitnesses) of learners p and q, respectively. This interaction helps 

diversify the search process and prevents stagnation by allowing information 

exchange across the population. The learner phase is executed N times so that every 

individual has the opportunity to improve through peer interaction. 

 

Each design candidate generated during the optimization process is evaluated using a 

geometrically nonlinear finite element analysis based on the Newton–Raphson 

iterative method. Unlike linear analysis, which assumes infinitesimal displacements 

and a fixed stiffness matrix, geometrically nonlinear analysis captures the influence 

of large displacements and rotations on the structural response by updating both 

internal forces and the stiffness matrix in each iteration. This capability is essential 

for accurately assessing slender truss systems or load scenarios that induce significant 

geometric changes, as linear assumptions may lead to unsafe or overly conservative 

designs [19]. 

 

 𝐑 = 𝐅ₑₓₜ − 𝐅ᵢₙₜ(𝐔) (11) 

 

 

where 𝐑 is the residual force vector, 𝐅ₑₓₜ is the externally applied load vector, and 

𝐅ᵢₙₜ(𝐔) is the internal force vector, which is a function of the current displacement 

vector 𝐔. The internal forces are calculated based on the deformed geometry at each 

iteration, accounting for axial elongation and direction changes of the truss elements. 

 

 

 𝐔ᵏ⁺¹ = 𝐔ᵏ + [𝐊ᵏ]⁻¹ 𝐑ᵏ (12) 

 

where 𝐊ᵏ is the tangent stiffness matrix evaluated at the k-th iteration. This matrix 

represents the sensitivity of internal forces to changes in displacement and must be 

updated at each step to reflect the evolving structural configuration. Convergence is 

assumed when the norm of the displacement increment Δ𝐔 falls below a predefined 

tolerance level. If convergence is not reached within a maximum number of iterations, 

the current design is penalized or discarded as infeasible. 

The Newton–Raphson technique is widely adopted in structural mechanics due to its 

quadratic convergence behavior, provided that the initial guess is close to the true 

solution. Its integration into metaheuristic-based optimization frameworks—such as 

the TLBO algorithm presented here—enhances the physical realism of the design 

evaluation, particularly for load cases where geometric effects are non-negligible. 

Similar nonlinear solvers have been employed in previous truss optimization studies 

to capture the true structural response under large deformations. 
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3  Results 

To validate the performance of the proposed TLBO framework enhanced with 

geometrically nonlinear analysis, the classical ten-bar truss problem is adopted as a 

benchmark case study. This structure is widely utilized in structural optimization 

research due to its simplicity, well-defined constraints, and availability of reference 

solutions.  The ten-bar truss consists of six nodes and ten members, arranged in a 

planar configuration forming two stacked triangles connected at the middle. The nodal 

layout and member connectivity are fixed throughout the optimization process. The 

design domain is symmetric, and the structure is subjected to vertical point loads 

applied at two nodes on the bottom chord. The design variables are the cross-sectional 

areas of the ten truss members, Ai, for i = 1, 2, ..., 10, which are to be optimized to 

minimize the total structural weight. The coordinates of the nodes, element 

connectivity, material properties, and loading conditions are listed below. 

Steel was selected as the material for the truss, characterized by a Young’s modulus 

of 10,000 ksi and a density of 0.1 lb/in³. The allowable axial stress is limited to 25 ksi, 

and the maximum nodal displacement is constrained to 2.0 inches. The loading 

conditions involve two vertical point loads of 100 kips applied downward at nodes 2 

and 3. Nodes 1 and 4 are fully constrained in both the X and Y directions, providing 

support to the structure. Each cross-sectional area Ai is bounded between 0.1 in² and 

35.0 in² to ensure stability and prevent singularities in the stiffness matrix. All 

members are assumed to have circular cross sections for simplicity in analysis and 

practical constructability. The configuration of the ten-bar truss, including node and 

member numbering, loading conditions, and support constraints, is illustrated in 

Figure 1. 

 

 
Figure 1. 10-bars truss layout 

The main goal of the optimization process was to minimize the overall weight of the 

truss by adjusting the cross-sectional areas of its ten structural members. The best 
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design obtained through the proposed approach resulted in a total weight of 504.801 

lb, highlighting the method’s effectiveness. Details of the optimal cross-sectional 

areas are listed in Table 1. Notably, the solution tends to assign smaller areas to the 

diagonal elements, while larger sections are preserved for the vertical and bottom 

chord members, indicating a well-balanced material distribution in response to the 

applied loads and boundary conditions. 

 

Member Area (in²) 

1 28.31 

2 5.45 

3 12.12 

4 20.15 

5 25.56 

6 31.97 

7 20.91 

8 10.42 

9 26.10 

10 3.35 

Table 1: Optimized areas for the truss members. 

These values satisfy all imposed stress and displacement constraints under large-

displacement behavior. The incorporation of geometrically nonlinear analysis ensures 

that member deformations are accurately captured, enhancing the reliability of the 

final design. Compared to the results reported by Camp and Farshchin [16], who 

obtained a final weight of 545.175 lb using the classical TLBO method based on linear 

finite element analysis, the proposed nonlinear-enhanced framework offers a notable 

improvement in structural efficiency. The reduction in weight reflects the advantage 

of evaluating member responses under actual geometric nonlinearity, which avoids 

over-conservatism associated with linear assumptions. Despite using the same initial 

problem setup, the refined solution space and improved constraint handling allow for 

a more realistic and lighter design. 

The convergence behavior of the GNTLBO algorithm throughout the optimization 

process is illustrated in Figure 2. The figure depicts the penalized objective value (total 

weight) at each iteration. As seen, the optimization process exhibits a smooth and 

rapid decline in the objective value within the first few iterations, followed by a 

gradual tapering as it approaches the optimal solution. The convergence curve 

highlights the algorithm's ability to balance exploration and exploitation effectively. 

The final objective stabilizes at approximately 504.801 lb, confirming the robustness 

of the proposed approach. The efficient convergence trend also reflects the proper 

functioning of the penalty function in handling constraint violations during early 

iterations. 
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Figure 2. Convergence history of GNTLBO 

 

 

 

4  Conclusions and Contributions 

This study presented a geometrically nonlinear extension of the Teaching–Learning-

Based Optimization algorithm, referred to as GNTLBO, for structural size 

optimization of trusses. The proposed approach incorporates a Newton–Raphson-

based nonlinear analysis procedure directly within the optimization loop, allowing for 

the accurate evaluation of structural response under large displacements. By doing so, 

the framework improves upon conventional TLBO implementations that rely on linear 

assumptions and are therefore prone to inaccuracies in flexible or slender structures. 

The effectiveness of the proposed method was demonstrated using the classical 10-

bar truss benchmark problem. The GNTLBO algorithm successfully identified a 

design with a final structural weight of 504.801 lb, which satisfies all stress and 

displacement constraints. Compared to existing linear TLBO results from the 

literature, the GNTLBO framework produced a lighter and more realistic design, 

emphasizing the importance of considering geometric nonlinearity in structural 

optimization.  

Furthermore, the convergence history revealed that the algorithm maintains strong 

performance in terms of exploration and convergence, with the penalized objective 

value rapidly declining and stabilizing around the optimal design. This behavior 

indicates that the integration of geometric nonlinearity does not compromise the 

convergence capability of the TLBO algorithm but rather strengthens its applicability 

to real-world structural problems. Future work may extend this approach to more 

complex three-dimensional structural systems or integrating plastic materials. 
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