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Abstract 
 

One of the biggest obstacles in optimization is finding explicit objective functions that 

describe target outcomes. However, the need to explicitly define complex objective 

functions and constraints with respect to design variables can be eliminated through 

the use of Artificial Neural Network (ANN)-based optimization. This method enables 

the optimization of discontinuous, nonlinear design problems with multiple variables, 

objective functions, and constraints. In this study, a scheduling simulation is 

established to generate big data for construction planning of a warehouse project. The 

complex construction process scheduling is formulated into an objective function 

derived from ANNs, which is trained on the generated data to map zoning areas and 

manpower to costs. Jacobian and Hessian matrices of the ANN-based functions are 

formulated to implement the Newton-Raphson iteration for finding stationary points 

of the Lagrange functions. The optimization can consider planning constraints such 

as site capacity, concreting capacity, etc., while providing solutions for minimizing 

costs. Results show that cost predicted by ANN-based optimization is located at the 

minimum of big data ranges, indicating a potential of the proposed method to aid 

construction engineers in establishing optimized construction strategies. 
 

Keywords: ANNs, Lagrange, optimization, construction planning, construction 

scheduling, big data in construction. 
 

 

 

CONSTRUCTION PLANNING BASED 

ON LAGRANGE OPTIMIZATION 

WITH ARTIFICIAL NEURAL 

NETWORK  

 

Construction Planning Based on Lagrange 

Optimization With Artificial Neural Network 

 
W.-K. Hong and T. D. Pham 

 
Kyung Hee University,  

Department of Architectural Engineering, 

Yongin, Republic of Korea 

 

 

Proceedings of the Seventh International Conference on 
Artificial Intelligence, Soft Computing, Machine Learning and Optimization, 

in Civil, Structural and Environmental Engineering  
Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 11, Paper 2.1 

Civil-Comp Press, Edinburgh, United Kingdom, 2025 
ISSN: 2753-3239,  doi: 10.4203/ccc.11.2.1 



2 

 

1  Introduction 
 

Construction planning is a complex process that involves considering multiple 

aspects of a project. Employing a large number of workers and hiring equipment 

intensively can reduce construction time but significantly increase operational and 

financial costs. On the other hand, reducing resource allocation can prolong the 

schedule, resulting in penalties for failing to meet deadlines. Traditionally, the 

optimization of construction schedules has relied heavily on trial-and-error methods 

and the experience of engineers, leading to inconsistent scheduling effectiveness. 

Recently, artificial intelligence (AI) has been successfully applied in many fields such 

as structural health monitoring, design optimization, quality control, and more. 

However, research on applying AI to optimize construction planning remains limited. 

Some notable studies include those by Raymond E. Levitt [1], Wei Lin [2], and Jude 

et al. [3]. The early mention of AI in construction planning was in 1988 by Raymond 

E. Levitt [1], who summarized early attempts at using AI-based techniques to generate 

construction project plans. These studies proposed generating construction plans 

using ANNs trained on stored engineering knowledge. However, their efficiency was 

limited by the quantity and consistency of available data. In 2021, Wei Yin [2] 

proposed an AI-based approach for construction schedule optimization. Resource 

allocation during construction phases was determined using fuzzy single-objective 

linear programming, demonstrating reduced resource intensity compared to the initial 

tender. In 2023, a study by Jude et al. [3] explored the application of ANN and neuro-

fuzzy models in construction scheduling, where the networks were trained on data 

extracted from documents related to a two-storey reinforced concrete (RC) frame 

structure. The results indicated relatively good accuracy in ANN-based predictions. 

 

Although recent advances in AI technology offer promising opportunities for 

optimizing construction planning, a convenient and practical algorithm for resource 

allocation and scheduling has yet to be established. A commonly encountered 

challenge in planning reinforced concrete structures is to determine the optimal area 

for a single concreting zone and the corresponding number of workers required. This 

paper proposes a Lagrange-based approach to address this issue. A simulation 

algorithm was developed to generate scheduling-related big data, estimating 

formwork and labour costs based on the construction sequence of reinforced concrete 

elements, while accounting for financial expenses and penalties for deadline overruns. 

Instead of deriving objective functions through explicit mathematical expressions, 

ANN-based models were trained on the generated data. These trained functions were 

then optimized using Lagrange multipliers in combination with Newton-Raphson 

iterations, yielding an optimized plan that minimizes costs. 

 

The present paper investigates a case study involving the construction of a large-

scale reinforced concrete warehouse with dimensions of 125 m × 225 m, totalling 

28,125 m². Based on typical concreting capacities per batch, which range from 

1,500 m² to 3,000 m², the construction plan can be divided into 10 to 29 concreting 

zones. Figures 1(a), 1(b), and 1(c) illustrate examples of three among 20 options for 
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dividing the plan, and the three examples in Figure 1 divide the plan into 10, 15, and 

20 zones, respectively. 

 

 
(a) Plan divided into 10 zones. 

 

 
(b) Plan divided into 15 zones. 

 
(c) Plan divided into 20 zones. 

Figure 1: Master plan of the case study project. 
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The site management board decided to deploy three teams working simultaneously, 

allowing construction of three zones at a time. Each team consists of a formwork crew, 

a rebar crew, and a concreting crew, enabling them to operate independently. In terms 

of equipment, each team is assigned a set of formworks sufficient for one zone. Figure 

2 illustrates the construction sequence of the RC floor with three zones constructed at 

the same time. It should be noted that the time required for formwork installation, 

rebar assembly, and formwork removal depends on the number of workers allocated 

to each team. In contrast, the curing period—from concrete pouring to formwork 

removal—is fixed at eight days, corresponding to the estimated time at which the floor 

can support its self-weight. 
 

 

Figure 2: Construction sequence of the RC floor with three zones constructed 

simultaneously. 

 

The target was to complete the structural work at a minimal cost. The overall cost 

includes formwork rental fees, salaries for steel and formwork workers, financial 

costs, transportation expenses, machine and equipment usage (e.g., cranes, trucks, 

concrete pumps), and material costs, etc. It is important to note that most expenses—

such as material costs—were nearly fixed before the construction phase. Therefore, 

the focus of optimization was placed on formwork rental fees, labour wages, and 

financial costs, as these are highly influenced by construction planning. Financial 
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costs were calculated based on the bank interest rate and the total expenditure. Table 

1 shows fixed parameters and Table 2 lists input and output variables for the 

optimization. 

 

Table 1: Fixed input parameters. 

Fixed parameter Symbol Value 
 

Total area AT 28,125 m2 
 

Number of zones to be 

constructed at the same time 

n 3 
 

Formwork labor cost 

(installing and removing) 

Mf 0.275 work shift/m2 

Based on 

Vietnamese 

norm 

Rebar labor cost Ms 0.897 work shift/m2 

Labor cost for concrete 

curing 

Mc 0.001 work shift/m2 

Number of operations shifts 

per day 

Ns1 3 shifts 

Based on 8 

hours-shift Number of shifts a worker 

can do a day 

Ns2 2 shifts 

Maximum number of 

workers on site 

Nmax 0.5/m2  

Labor cost 
L1 30$ / shift 

Based on 

Vietnamese 

market 

L2 5$ / shift 

Cost of hiring formwork Mh 0.0822$/ day 

Concrete curing time Tc 8 days Based on 

Vietnamese 

condition 
Bank interest E 5%/ year 
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Table 2: Input and output variables for the optimization. 
 

Variable Sym-

-bol 

Range Remark 

Input 

variables 

(input 

variable for 

ANN 

training) 

Zone area Az 1500 m2 ~ 

3000 m2 

To be 

generated 

within ranges 

assigned by 

engineers 

Number of formwork 

worker 

Wf 300~500 

manpower 

Number of rebar 

worker 

Ws 300~500 

manpower 

Intermediate 

calculated 

variable (not 

being 

trained) 

Number of zones n0 n0 = AT/ Az To be 

calculated 

based on 

input 

variables 

Formwork area to be 

hired 

Af0 Af = nAz 

Occupied formwork 

area 

Af1 To be 

calculated 

based on 

schedule 

Free formwork area Af2 Af2 = Af - Af1 

Output 

variables 

(objective 

functions) 

Construction time T  To be 

calculated 

based on 

input 

variables 

Total cost of 

formwork rental fees, 

labour wages, 

financial costs 

M  

 

2  Methods 
 

The optimization procedure consists of three steps, as shown in Figure 3: 

generating big data, training ANNs, optimizing ANN-based objective functions. 

 

 

Figure 3: Three steps of ANN based Lagrange optimization 
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In Step 1, an algorithm, shown in Figure 4, is developed to simulate the 

construction sequence of RC structures and to calculate the schedule and costs based 

on zone areas and the number of workers. It estimates the daily work progress using 

the parameters listed in Table 3. A proper number of large datasets needed for training 

ANNs should be selected discreetly based on a level of complexity for a problem 

under consideration. Acceptable training accuracy based on two million datasets are 

yielded for construction schedule. Bigger datasets need to be regenerated, or training 

parameters need to be revised when training accuracies are not acceptable. Datasets 

are normalized between -1 and 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Daily parameters showing work progress for data generator. 

Variable Symbol 

Day i 

Zone number j 

Area of Zone j Zj 

Area of Zone j at the end of Day i where formwork installation is 

finished 

Pf_i_j 

Area of Zone j at the end of Day i where rebar assembling is 

finished 

Ps_i_j 

Curing time of concrete at Zone j at the end of Day i  Pc_i_j 

Area of Zone j at the end of Day i where formwork removal is 

finished 

Pr_i_j 

Number of zones where formwork installation or removal are 

being processed at the time of consideration 

nf  

Number of zones where rebar installation is being processed at 

the time of consideration 

ns 
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Figure 4: Algorithm developed to simulate the construction sequence of RC structures for generating big data 
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In Step 2, MATLAB deep learning toolbox (MATLAB 2024b) [4] is used to train 

ANNs-based generalized functions based on large datasets generated from Step 1 to 

calculate weight and bias matrices. A number of large datasets and training parameters 

selected to train ANNs affects accuracies of weight and bias matrices. Good training 

parameters for ANNs should be used in achieving good training results. Training 

parameters include a number of hidden layers, neurons, validations, and required 

epochs, etc. The ANN-based objective functions and constraining functions are, then, 

derived using weight and bias matrices found from training.  

 

 

 

In Step 3, explicitly obtained objective functions are replaced by ANN-based 

objective functions to apply Lagrange multiplier method for the optimization of ANN-

based objective functions with KKT conditions. SQP algorithm of MATLAB global 

optimization toolbox [4] is used for solving for maxima and minima of each objective 

function after ANN-based objective functions, equalities, and inequalities are 

substituted into MATLAB global optimization toolbox [4]. Further explanation of 

ANN-based Lagrange optimization can be found on the Books [5] - [12]. 

 

 

 

 

3  Results 
 

Figure 5 presents the distributions of the generated data, including zone area, 

number of formwork workers, and number of steel workers—randomly generated 

within the ranges specified in Table 2—as well as the corresponding calculated costs. 

Table 4 summarizes the training results, with performance evaluated using the root 

mean square error (RMSE) calculated by Equation (1). 

 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑁
𝑖=1

𝑁
 Equation (1) 

 

Where: 

𝑦𝑖 - The ith test values 

𝑦𝑖̂ - ANN-based value of the ith test 

N - Number of tests 

 

 

 

Table 4: Training quality 

No. Parameter Layer Neuron Best epochs RMSE 

2 Cost 6 40 24057 3.077E-4 
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Figure 5: Distribution of big data 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Table 4 shows the ANN-based construction plan for minimizing cost. The accuracy 

of the ANN-based functions is verified by substituting input variables into the data 

generator, demonstrating that the ANN-based optimized plans achieve considerable 

accuracy with deviation of 0.0443% between the ANN-based outputs and those 

calculated by the generator. Figure 6 shows that the cost-optimized plan provided by 

the proposed algorithm is located at the minimum of the distribution of big data for 

costs. 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Cost-optimized plan provided by ANN-based Lagrange algorithm  

(1) Cost-optimized variables 

provided by ANN-based 

Lagrange algorithm 

Zone Area 2359.1 m2 

Number of steel workers 321 men 

Number of formwork workers 300 men 

(2) Cost predicted by ANNs 1.680 million $ 

(3) Cost recalculated by construction sequence simulator 1.681 million $ 

(4) Construction time 96 days 

(5) Cost deviation: [(2)-(3)]/(2)*100 0.0443% 
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Figure 6: Distribution of big data for cost 

 
 

 

 

4  Conclusions and Contributions 
 

The present study presents a novel algorithm for generating large-scale 

construction data, enabling the estimation of costs based on the sequential activities 

of RC structures. The complex relationships between key input variables—zone area 

and workforce size—and cost are effectively captured using ANNs. A single-

objective Lagrange-based optimization framework is then applied to the ANN-derived 

objective functions, yielding optimized construction plans. Comparisons show 

considerable accuracy (0.0443% deviation) in prediction and reductions in cost 

relative to baseline data, highlighting the efficacy and practical potential of the 

proposed ANN-integrated optimization approach in enhancing construction managing 

and decision-making. 
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