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Abstract 

The coefficient of consolidation is a critical parameter in geotechnical engineering, 

influencing the design and safety of various infrastructure projects. Traditionally, 

coefficient of consolidation is estimated through laboratory consolidation tests, which 

are time-consuming, subject to operator variability, and may not accurately reflect in-

situ conditions. The challenge becomes more significant when site-specific 

information is incomplete or unavailable. With the increasing integration of Physics-

Informed Neural Networks (PINNs) in geotechnical modeling, this study proposes a 

novel PINN-based framework that incorporates the Mikasa’s one-dimensional 

consolidation equation to estimate site-specific coefficient of consolidation values 

under varying data availability. 

In this study, we developed a PINN-based model to estimate the coefficient of 

consolidation using only subsidence data, without requiring explicit information on 

embankment surcharge loading history. The results demonstrate that the proposed 

approach can reliably infer coefficient of consolidation capturing the essential features 

of the consolidation process. This work highlights the adaptability, efficiency, and 

physical consistency of the PINN framework, particularly in data-scarce geotechnical 

settings. By reducing dependence on traditional laboratory testing and prior loading 

records, this approach offers a scalable and interpretable alternative for consolidation 

analysis in both research and practical applications. 
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1  Introduction 
 

Soil consolidation is a fundamental phenomenon in geotechnical engineering, 

describing the gradual compression of saturated soils under external loading due to 

the dissipation of excess pore water pressure. Accurate understanding of this process 

is crucial for predicting settlement behavior in foundations, embankments, and other 

infrastructure, especially in fine-grained soils such as clays and silts. For that effective 

coefficient of consolidation (cv) estimation is a crucial parameter. 

The classical one-dimensional (1D) consolidation theory introduced by Terzaghi 

(1925) [1] laid the foundation for modern consolidation analysis. However, it has 

limitations, particularly in accurately estimating the coefficient of consolidation 

(cv)[2]. Because the coefficient of consolidation (cv) plays a vital role in estimating 

the rate and extent of settlement. Terzaghi’s theory uses the coefficient of 

consolidation (cv) to model pore pressure dissipation, indirectly linking it to settlement 

over time. To address this limitation, Mikasa (1963) proposed a more realistic 

approach that defines coefficient of consolidation (cv) based on strain rather than pore 

water pressure, allowing a more direct representation of settlement behavior [3]. 

Traditionally, coefficient of consolidation (cv) is estimated through laboratory tests 

such as the Casagrande logarithm-of-time fitting method (Casagrande and Fadum, 

1940) [4] and the Taylor square-root-of-time method (Taylor, 1948)[5]. Among these, 

the Casagrande method is most used in soil mechanics’ practice [6] . However, these 

conventional approaches are often time-consuming, susceptible to human error, and 

constrained by limited data availability—particularly in remote locations or post-

disaster conditions where timely and accurate soil assessment is critical. 

With advances in deep learning, data-driven methods, especially Physics-Informed 

Neural Networks (PINNs), have emerged as powerful tools for solving forward and 

inverse problems governed by partial differential equations (PDEs). PINNs embed 

physical laws such as governing equations and boundary conditions directly into the 

learning process, enabling models to generalize well even with sparse or noisy data 

[7] . Recent applications of machine learning in geotechnics include regression-based 

prediction of the coefficient of consolidation (cv) [8], pore pressure estimation [9] , 

and stratified ground consolidation [10]. However, most of these studies are based on 

Terzaghi’s 1D equation. Very few have incorporated Mikasa’s formulation into the 

PINN framework, despite its improved realism in capturing soil behavior. 

Furthermore, the challenge of estimating cv when embankment loading history is 

unavailable, a common issue in post-disaster environments or un-instrumented sites, 

remains underexplored. 
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In this study, we propose a PINN-based consolidation model that incorporates 

Mikasa’s one-dimensional governing equation to predict the soil coefficient of 

consolidation (cv) and one-day subsidence. By integrating known embankment 

deformation into the Mikasa PDE, the model provides a valuable alternative to 

traditional laboratory testing methods. 

 

 

 

 

2 Methods 

 
 2.1 Laboratory test: 

One-dimensional consolidation tests were conducted on a silty clay specimen using 

an oedometer under controlled laboratory conditions. The testing protocol involved 

incremental loading and soaking to replicate in-situ behavior. On Day 1, the vertical 

deformation was recorded as 4.5 × 10⁻³ cm. The pre-consolidation pressure (𝜎𝑐) or the 

sandy soil was identified at 0.05 kgf/cm². The coefficient of consolidation (cv) was 

estimated using the Casagrande logarithmic time fitting method based on test results 

over the first three days. Relevant data from Day 1, used in the subsequent PINN 

modeling, are summarized in Table 1. 

 

 

 

 2.2 Mikasa Governing Equation: 

The governing equation for one-dimensional consolidation adopted in this study is 

based on the classical formulation by Mikasa, under the assumption of small 

deformations: 

𝜕𝜀

𝜕𝑡
= 𝑐𝑣

𝜕2𝜀

𝜕𝑧2
   (0 ≤ 𝑧 ≤  𝐻;  𝑡 >  0)                                                                                  (1) 

 Here, ε represents strain, which is a function of time t and depth z. For generality 

and numerical stability, Equation (1) was nondimensionalized using: 

Depth: 𝑍 =
𝑧

𝐻
   and Time factor: 𝑇𝑣 =

𝑐𝑣𝑡

𝐻2 

The resulting nondimensional form is: 

𝜕𝜀

𝜕𝑇𝑣
 =  

𝜕2𝜀

𝜕𝑍2     ;   [0 ≤ 𝑍 ≤ 1,   𝑇𝑣 > 0]                                                           (2) 
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2.3 Initial and Boundary Conditions: 

In this study, one-dimensional consolidation of a single soil layer was modeled 

with the equation (1). The soil layer was defined from z= 0 at the top surface to z=H 

at the bottom. The top boundary (BCt) at z=0 was set to allow water to drain out, while 

the bottom boundary (BCb) at z=H was treated as a no-flow boundary, representing a 

plane of symmetry. This setup allowed us to model only half the soil layer, simulating 

double drainage conditions with less computational effort.The initial condition (IC) 

assumed that the excess pore water pressure was the same throughout the layer right 

after loading, representing an immediate application of load. 

2.4 Physics-Informed Neural Networks (PINNs) 

A PINN framework was developed to solve the nondimensionalized consolidation 

problem. The model integrates data-driven observations with physics-based 

constraints derived from Equation (2), enabling both forward predictions and inverse 

parameter estimation. 

a. Loss Function 

The total loss function ℒ𝑇𝑜𝑡𝑎𝑙(𝜃;  𝜏) comprises four components: 

• Data Loss     ℒ𝑂𝐵𝑆_𝐷𝐸𝐹𝑂𝑅𝑀 : Measures discrepancy between observed and 

predicted deformation. 

• PDE Residual ℒ𝑃𝐷𝐸: Enforces conformity to the governing equation. 

• Boundary Condition Loss ℒ𝐵𝐶    : Enforces boundary conditions at soil surface 

and base. 

• Initial Condition Loss ℒ𝐼𝐶: Enforces the initial strain distribution. 

ℒ𝑇𝑜𝑡𝑎𝑙(𝜃;  𝜏)   = ℒ𝑂𝐵𝑆_𝐷𝐸𝐹𝑂𝑅𝑀 + ℒ𝑃𝐷𝐸 + ℒ𝐵𝐶 + ℒ𝐼𝐶                                       (3) 

Model accuracy was evaluated using the root mean square error (RMSE): 

ℒ𝑅𝑀𝑆𝐸(𝜃;  𝜏) =
1

𝑁𝑜𝑏𝑠
∑ (𝑦

𝑧,𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑦

𝑧,𝑖
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 2

𝑁𝑜𝑏𝑠
𝑖=1           

 
                                             (4) 

b.  Network Architecture and Training 

The PINN architecture consisted of a fully connected network: 2×15×20×1, where 

the input corresponds to nondimensional depth and time, and the output is vertical 

strain. The tanh activation function was used across all hidden layers. Weights were 

initialized via the Glorot normal method. A two-stage training strategy was adopted: 
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1. Stage 1: The coefficient of consolidation (cv)  was fixed at 3.05 × 10⁻⁸ m²/s 

(from laboratory tests). The network was trained to reproduce observed 

subsidence and strain profiles. 

2. Stage 2: The fixed coefficient of consolidation (cv)  was released as a trainable 

parameter, enabling the model to infer a spatially and temporally varying 

coefficient of consolidation (cv) profile based on observed data. 

Training employed the Adam optimizer with a learning rate of 10-³ over 400 epochs. 

Test loss curves (e.g., for Day 1 in Figure 1) confirmed convergence, with low 

residuals indicating strong generalization. 

 

 

 

 
Figure 1: The evolution of the testing errors as a function of the training epochs for day one 

 

 

 

 

 

c. Boundary Filtering Strategy 

During the enforcement of the governing PDE in the PINN training, collocation points 

near critical spatial and temporal boundaries were filtered out. Specifically, points 

close to the maximum depth (z = zmax) at the earliest (t = tmin ) and at the 1-day mark 

(t = 2400), were excluded from the set of random spatiotemporal collocation points 

where the PDE residual is evaluated. This collocation point filtering avoids numerical 

stiffness and boundary-induced artifacts, enabling the model to focus on accurately 

learning the interior solution of the consolidation PDE and ensuring stable and robust 

PDE enforcement throughout training. 
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Figure 2: Flow diagram of network. 

 

3  Results 
 

On Day 1, the Physics-Informed Neural Network (PINN) model yielded an initial 

estimate for the coefficient of consolidation (cv), of 2.32 × 10⁻⁴ cm²/s. This prediction 

slightly overestimated the benchmark analytical value of 1.97 × 10⁻⁴ cm²/s, which was 

obtained using Casagrande’s logarithmic time fitting method, a standard technique in 

geotechnical engineering for interpreting laboratory consolidation data. The relative 

error between the PINN prediction and the benchmark value was approximately 

17.77%, indicating a minor numerical discrepancy. This level of accuracy is 

acceptable for preliminary geotechnical assessments, where small deviations in 

coefficient of consolidation (cv) have minimal impact on consolidation time 

predictions. Nonetheless, this early prediction highlights the capability of the PINN 

framework to capture the temporal evolution of consolidation behavior. The close 

agreement between the PINN-derived coefficient of consolidation (cv), and the 

analytical reference supports the model’s ability to approximate physics-governed 

deformation responses from limited data inputs, even in the absence of direct loading 

information. 

 

 

 

 

Table 1: ‘Cv’ Estimation by PINN vs Lab Test and Relative Error (%) 

 

Further insights were obtained from the PINN-predicted subsidence profile [see 

(Figure 3)] under the applied load during Day 1, which demonstrated excellent 

agreement with the laboratory-measured subsidence observed under identical loading 

conditions. The model accurately captured the soil deformation, corresponding to the 

Parameters PINN 

[ cm²/s] 

Lab test 

[ cm²/s] 

Relative error 

[%] 

cv 2.32 × 10⁻⁴ 1.97 × 10⁻⁴  17.77 
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onset of primary consolidation, which predominantly occurred within the first 200 

minutes. This behavior is typical of near-surface soils, where higher permeability 

facilitates faster pore pressure dissipation, leading to more immediate settlement 

following load application. After this initial phase, the subsidence profile stabilized, 

indicating a transition to a slower deformation regime.  

 

Figure 3: PINNs predicted and observed soil subsidence for one day 

 

 

4  Conclusions and Contributions 
 

This study demonstrated the effectiveness of Physics-Informed Neural Networks 

(PINNs) in modeling the one-dimensional consolidation behavior of soft soils. By 

integrating observational data with governing physical laws, the PINN model was able 

to estimate the coefficient of consolidation (cv) and replicate the subsidence profile 

without requiring explicit loading information. 

The model’s early prediction of coefficient of consolidation (cv), closely 

approximated the value obtained using Casagrande’s logarithmic time fitting method, 

with a relative error of 17.77%. Moreover, the PINN successfully captured the initial 

rapid contraction of near-surface soils during the primary consolidation phase, 

followed by a stable settlement response, consistent with both laboratory observations 

and theoretical expectations. The results confirm the potential of PINNs as a robust 

and data-efficient framework for inverse analysis and predictive modeling in 

geotechnical engineering. By enforcing physical consistency through partial 

differential equations and boundary conditions, PINNs offer a powerful alternative to 

conventional empirical approaches, particularly in scenarios where field data are 

limited or incomplete. Future work will focus on extending the framework to multi-

layered soil systems and incorporating time-varying loading conditions to further 

enhance the applicability of PINNs in real-world geotechnical problems. 
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