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Abstract

The coefficient of consolidation is a critical parameter in geotechnical engineering,
influencing the design and safety of various infrastructure projects. Traditionally,
coefficient of consolidation is estimated through laboratory consolidation tests, which
are time-consuming, subject to operator variability, and may not accurately reflect in-
situ conditions. The challenge becomes more significant when site-specific
information is incomplete or unavailable. With the increasing integration of Physics-
Informed Neural Networks (PINNs) in geotechnical modeling, this study proposes a
novel PINN-based framework that incorporates the Mikasa’s one-dimensional
consolidation equation to estimate site-specific coefficient of consolidation values
under varying data availability.

In this study, we developed a PINN-based model to estimate the coefficient of
consolidation using only subsidence data, without requiring explicit information on
embankment surcharge loading history. The results demonstrate that the proposed
approach can reliably infer coefficient of consolidation capturing the essential features
of the consolidation process. This work highlights the adaptability, efficiency, and
physical consistency of the PINN framework, particularly in data-scarce geotechnical
settings. By reducing dependence on traditional laboratory testing and prior loading
records, this approach offers a scalable and interpretable alternative for consolidation
analysis in both research and practical applications.
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1 Introduction

Soil consolidation is a fundamental phenomenon in geotechnical engineering,
describing the gradual compression of saturated soils under external loading due to
the dissipation of excess pore water pressure. Accurate understanding of this process
is crucial for predicting settlement behavior in foundations, embankments, and other
infrastructure, especially in fine-grained soils such as clays and silts. For that effective
coefficient of consolidation (¢,) estimation is a crucial parameter.

The classical one-dimensional (1D) consolidation theory introduced by Terzaghi
(1925) [1] laid the foundation for modern consolidation analysis. However, it has
limitations, particularly in accurately estimating the coefficient of consolidation
(cv)[2]. Because the coefficient of consolidation (cy) plays a vital role in estimating
the rate and extent of settlement. Terzaghi’s theory uses the coefficient of
consolidation (¢,) to model pore pressure dissipation, indirectly linking it to settlement
over time. To address this limitation, Mikasa (1963) proposed a more realistic
approach that defines coefficient of consolidation (¢,) based on strain rather than pore
water pressure, allowing a more direct representation of settlement behavior [3].

Traditionally, coefficient of consolidation (¢y) is estimated through laboratory tests
such as the Casagrande logarithm-of-time fitting method (Casagrande and Fadum,
1940) [4] and the Taylor square-root-of-time method (Taylor, 1948)[5]. Among these,
the Casagrande method is most used in soil mechanics’ practice [6] . However, these
conventional approaches are often time-consuming, susceptible to human error, and
constrained by limited data availability—particularly in remote locations or post-
disaster conditions where timely and accurate soil assessment is critical.

With advances in deep learning, data-driven methods, especially Physics-Informed
Neural Networks (PINNs), have emerged as powerful tools for solving forward and
inverse problems governed by partial differential equations (PDEs). PINNs embed
physical laws such as governing equations and boundary conditions directly into the
learning process, enabling models to generalize well even with sparse or noisy data
[7] . Recent applications of machine learning in geotechnics include regression-based
prediction of the coefficient of consolidation (cv) [8], pore pressure estimation [9] ,
and stratified ground consolidation [10]. However, most of these studies are based on
Terzaghi’s 1D equation. Very few have incorporated Mikasa’s formulation into the
PINN framework, despite its improved realism in capturing soil behavior.
Furthermore, the challenge of estimating cv when embankment loading history is
unavailable, a common issue in post-disaster environments or un-instrumented sites,
remains underexplored.



In this study, we propose a PINN-based consolidation model that incorporates
Mikasa’s one-dimensional governing equation to predict the soil coefficient of
consolidation (cv) and one-day subsidence. By integrating known embankment
deformation into the Mikasa PDE, the model provides a valuable alternative to
traditional laboratory testing methods.

2 Methods

2.1 Laboratory test:

One-dimensional consolidation tests were conducted on a silty clay specimen using
an oedometer under controlled laboratory conditions. The testing protocol involved
incremental loading and soaking to replicate in-situ behavior. On Day 1, the vertical
deformation was recorded as 4.5 X 1073 cm. The pre-consolidation pressure (o, ) or the
sandy soil was identified at 0.05 kgf/cm?. The coefficient of consolidation (cv) was
estimated using the Casagrande logarithmic time fitting method based on test results
over the first three days. Relevant data from Day 1, used in the subsequent PINN
modeling, are summarized in Table 1.

2.2 Mikasa Governing Equation:

The governing equation for one-dimensional consolidation adopted in this study is
based on the classical formulation by Mikasa, under the assumption of small
deformations:

de d%¢
~=C35 (0<z < H t>0) (1)

Here, € represents strain, which is a function of time t and depth z. For generality
and numerical stability, Equation (1) was nondimensionalized using:
cot
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The resulting nondimensional form is:

2
;—;=27§ ;[0<Z <1, T,>0] )



2.3 Initial and Boundary Conditions:

In this study, one-dimensional consolidation of a single soil layer was modeled
with the equation (1). The soil layer was defined from z= 0 at the top surface to z=H
at the bottom. The top boundary (BC;) at z=0 was set to allow water to drain out, while
the bottom boundary (BC}) at z=H was treated as a no-flow boundary, representing a
plane of symmetry. This setup allowed us to model only half the soil layer, simulating
double drainage conditions with less computational effort.The initial condition (/C)
assumed that the excess pore water pressure was the same throughout the layer right
after loading, representing an immediate application of load.

2.4 Physics-Informed Neural Networks (PINNs)

A PINN framework was developed to solve the nondimensionalized consolidation
problem. The model integrates data-driven observations with physics-based
constraints derived from Equation (2), enabling both forward predictions and inverse
parameter estimation.

a. Loss Function
The total loss function L1,¢4;(8; T) comprises four components:

e Data Loss Lops perorm : Measures discrepancy between observed and
predicted deformation.

o PDE Residual Lppg: Enforces conformity to the governing equation.

e Boundary Condition Loss L, : Enforces boundary conditions at soil surface
and base.

o Initial Condition Loss £L;: Enforces the initial strain distribution.

Lr1otar(0; ) = Lops perorm + Lppe + Lpc + Lyc 3)

Model accuracy was evaluated using the root mean square error (RMSE):
1 Nops dicted
LRMSE(H; T) = mzizf (yz,:e icted _ y;}zserved) 2 4)

b. Network Architecture and Training

The PINN architecture consisted of a fully connected network: 2x15%20x1, where
the input corresponds to nondimensional depth and time, and the output is vertical
strain. The fanh activation function was used across all hidden layers. Weights were
initialized via the Glorot normal method. A two-stage training strategy was adopted:



1. Stage 1: The coefficient of consolidation (cv) was fixed at 3.05 x 107® m?/s
(from laboratory tests). The network was trained to reproduce observed
subsidence and strain profiles.

2. Stage 2: The fixed coefficient of consolidation (c¢v) was released as a trainable
parameter, enabling the model to infer a spatially and temporally varying
coefficient of consolidation (cv) profile based on observed data.

Training employed the Adam optimizer with a learning rate of 102 over 400 epochs.
Test loss curves (e.g., for Day 1 in Figure 1) confirmed convergence, with low
residuals indicating strong generalization.
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Figure 1: The evolution of the testing errors as a function of the training epochs for day one

c. Boundary Filtering Strategy

During the enforcement of the governing PDE in the PINN training, collocation points
near critical spatial and temporal boundaries were filtered out. Specifically, points
close to the maximum depth (z = zux) at the earliest (¢ = tuin ) and at the 1-day mark
(t = 2400), were excluded from the set of random spatiotemporal collocation points
where the PDE residual is evaluated. This collocation point filtering avoids numerical
stiffness and boundary-induced artifacts, enabling the model to focus on accurately
learning the interior solution of the consolidation PDE and ensuring stable and robust
PDE enforcement throughout training.
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Figure 2: Flow diagram of network.

3  Results

On Day 1, the Physics-Informed Neural Network (PINN) model yielded an initial
estimate for the coefficient of consolidation (¢,), of 2.32 X 10~* cm?/s. This prediction
slightly overestimated the benchmark analytical value of 1.97 x 10~ cm?*/s, which was
obtained using Casagrande’s logarithmic time fitting method, a standard technique in
geotechnical engineering for interpreting laboratory consolidation data. The relative
error between the PINN prediction and the benchmark value was approximately
17.77%, indicating a minor numerical discrepancy. This level of accuracy is
acceptable for preliminary geotechnical assessments, where small deviations in
coefficient of consolidation (¢,) have minimal impact on consolidation time
predictions. Nonetheless, this early prediction highlights the capability of the PINN
framework to capture the temporal evolution of consolidation behavior. The close
agreement between the PINN-derived coefficient of consolidation (cy), and the
analytical reference supports the model’s ability to approximate physics-governed
deformation responses from limited data inputs, even in the absence of direct loading
information.

Parameters PINN Lab test Relative error
2
[ cm?/s] [ cm?/s] [%]
Cy 2.32x 10 1.97 x 10 17.77

Table 1: ‘Cv’ Estimation by PINN vs Lab Test and Relative Error (%)

Further insights were obtained from the PINN-predicted subsidence profile [see
(Figure 3)] under the applied load during Day 1, which demonstrated excellent
agreement with the laboratory-measured subsidence observed under identical loading
conditions. The model accurately captured the soil deformation, corresponding to the



onset of primary consolidation, which predominantly occurred within the first 200
minutes. This behavior is typical of near-surface soils, where higher permeability
facilitates faster pore pressure dissipation, leading to more immediate settlement
following load application. After this initial phase, the subsidence profile stabilized,
indicating a transition to a slower deformation regime.
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Figure 3: PINNs predicted and observed soil subsidence for one day

4 Conclusions and Contributions

This study demonstrated the effectiveness of Physics-Informed Neural Networks
(PINNs) in modeling the one-dimensional consolidation behavior of soft soils. By
integrating observational data with governing physical laws, the PINN model was able
to estimate the coefficient of consolidation (c,) and replicate the subsidence profile
without requiring explicit loading information.

The model’s early prediction of coefficient of consolidation (cv), closely
approximated the value obtained using Casagrande’s logarithmic time fitting method,
with a relative error of 17.77%. Moreover, the PINN successfully captured the initial
rapid contraction of near-surface soils during the primary consolidation phase,
followed by a stable settlement response, consistent with both laboratory observations
and theoretical expectations. The results confirm the potential of PINNs as a robust
and data-efficient framework for inverse analysis and predictive modeling in
geotechnical engineering. By enforcing physical consistency through partial
differential equations and boundary conditions, PINNs offer a powerful alternative to
conventional empirical approaches, particularly in scenarios where field data are
limited or incomplete. Future work will focus on extending the framework to multi-
layered soil systems and incorporating time-varying loading conditions to further
enhance the applicability of PINNs in real-world geotechnical problems.
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