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Abstract

The propagation of information through discretised domains is of crucial importance
in the field of scientific machine learning. Recent studies have demonstrated the ef-
ficacy of graph-based models for physical simulations, particularly due to the induc-
tive biases inherent in such frameworks. However, ensuring efficient information flow
through these graph architectures is a delicate aspect, due to the wide range of scales of
the simulated phenomena. We summarise some key architectural choices that are the
most prominent in the literature, and we propose a novel edge augmentation technique,
based on farthest point sampling and the Moller-Trumbore algorithm, for highly non-
convex geometries. The efficacy of our approach is demonstrated through the training
of a graph neural network model on a challenging, non-convex geometry.

Keywords: scientific machine learning, scientific computing, graph neural networks,
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1 Introduction

Over the last decade, the application of deep learning algorithms for physical simu-
lations has received a growing interest, in various fields such as solid and fluid me-
chanics [3,21], weather prediction [14,22], biology [29, 32] and many others. While
classical numerical simulations, such as the finite element method [24], are widely
known for their performance in simulating complex, multiphysics phenomena [1] and
for their ability to benefit from the most recent advances in high performance comput-
ing [17], some problems are still unreachable for these techniques. While training data
is critical for accurate machine-learning models, recently, physics-informed machine
learning has emerged [12,23]. In this setting, the models are directly trained to respect
physical properties and equations, instead of relying on costly training data.

A well-suited model architecture is key to ensure a robust and accurate predic-
tion of physical phenomena, and to guarantee that the trained model exhibits the same
invariances and equivariances as the physical phenomenon in itself [2,3]. For such ap-
plications, graph neural networks seem to be the most promising set of models, with
state of the art results in a wide range of applications [4,21,22,27,31]. This success
can be explained by their inductive properties, but also by their similarity with classi-
cal numerical solvers such as the finite element method. The mesh-based approaches
of such techniques are strongly similar to a graph structure. Therefore, instead of op-
posing finite element solvers and machine learning, many works have been focusing
on finding a synergy between these two approaches [5, 16, 26]. Crucially, discrete
fields built on a mesh are therefore passed to graph neural networks, which then prop-
agate such information on the whole mesh through message-passing (MP) steps [8,9].

These meshes, arising from discretised physical domains, possess unique struc-
tural properties that challenge standard message-passing frameworks. Therefore, effi-
cient information propagation over mesh-based geometries is critical to the success of
Graph Neural Networks (GNNs) in physical applications. The recent performances of
graph-based approaches prove that such structures can be addressed efficiently. How-
ever, there appears to be a lack of systematic discussion on the main architectural
choices for dealing with mesh-like graph structures.

The paper is organised as follows. First, in section 2, the most classical techniques
for building a graph connectivity in mesh-based simulations are presented. A cat-
egorization of these techniques is introduced, and some of their key limitations on
challenging, irregular and non-convex domains are demonstrated. In section 3, we
propose a novel edge-augmentation procedure leveraging geometrical tools such as
ray-triangle intersection algorithms, to extend the previously mentioned techniques to
more challenging domains. While such geometrical tools have been investigated in
the context of finite element methods [18], to the best of our knowledge, an extension
to graph neural networks has never been presented. Finally, in section 4, we illustrate



the capacity of our method on a highly non-convex domain.

2 Information propagation techniques in mesh-based
graph structures

Although graph networks are proven to be very efficient in a wide range of tasks,
their locality bias, and the way message-passing is implemented, limits their ability
to simulate long-range interactions. A message-passing block propagates information
from one node to its direct neighbours, therefore the range for which the information
flows through a GNN is equal to its number of blocks, i.e its number of message-
passing steps on a forward pass. For a detailed explaination of information propaga-
tion through graph blocks, see, for instance, [2,28].

Typical mesh structures can have a diameter of a few thousand, therefore, a model
would need a few thousand blocks to propagate information through the whole geom-
etry. Because of the complexity of such models, their number of blocks is usually in
the order of magnitude of 10. Using the mesh structure directly as input to the model
is therefore impossible in most non-trivial scenarios. Enhancing the connectivity of
the mesh is therefore required. Note that most of the current works use a radius graph,
where each node is linked to all of the other nodes inside a given radius. However,
this improved connectivity is still not sufficient for complex, multi-scale phenomena.

In this section, we provide an overview of existing techniques designed to facilitate
information flow across such graph representations of mesh-based geometries. We
will focus on three main edge augmentation approaches, that seem to receive the most
attention in the recent years: multi-scale graph neural networks, multi-mesh message
passing, and edge augmentation through random sampling.

2.1 Multi-scale graph neural networks

Similar to U-Nets in computer vision [25], or multigrid approaches in finite element
methods [24, 30], the principle of multi-scale graph neural networks, also known as
graph u-nets [7, 15] is to store hierarchical discretizations of the domain, from coarse,
high-level geometric discretizations to more refined and precise meshes. Figure 1
illustrates the key components of the multi-scale message passing.

This structure is very efficient to encapsulate multi-scale phenomena, since each
level of refinement can propagate information to a different scale. However, this
comes with an added cost in terms of implementation and numerical complexity, since
it necessitates the implementation of projection steps from one mesh to another. The
order in which the information flows from one hierarchy of mesh to another can vary,
similar to V and W cycles in multigrid finite element method [30].



Figure 1: Multi-scale architecture. Several hierarchical refinements are stored, the
message-passing is performed sequentially within each mesh, and then pro-
jected to the coarser or finer mesh.

2.2 Multi-mesh message-passing

Several prominent works proved that while multi-scale graph neural networks are ef-
ficient, a simpler solution may be used: multi-mesh message passing. The idea is
similar, with hierarchical refinements of the same discretized geometries. However,
instead of separating the different refinements, the mid-range and long-range edges
that are built on the coarser meshes are simply added to the fine mesh. Therefore, the
model only propagates through a single graph, where the edges from all the hierarchies
have been added. The choice of the edge attributes is critical in this case, to ensure that
the hierarchy between the edges, and the different spacial ranges that are represented,
are well taken into account by the model. Usually, for physical applications, the at-
tribute of an edge is a function of the relative position between the two corresponding
nodes, and of the geometric distance between these two nodes. This choice ensures
that the resulting model will contain interesting inductive biases [2], which are crucial
for Physics-based applications. Figure 2 illustrates the resulting mesh.

Figure 2: Multi-mesh architecture. The edges of the finer and coarser meshes are
concatenated in a single graph, and the message-passing step occurs directly
on the full graph.

This approach is much simpler than the multi-scale message-passing, due to the
fact that the projections between the different mesh hierarchies are no longer needed.



One could think that, similar to computer vision, this simplification would limit the
model’s ability to simulate complex, multi-scale physical phenomena, however recent
results, in particular regarding weather prediction [14,22], tend to prove the opposite.
The internal representations of a graph neural network, provided that the architecture
of the graph is well suited, seem to be able to encapsulate the multi-scale phenomena
in a single graph, without the added complexity of handling projections between the
different refinement levels.

2.3 Random edge creation

The authors of [10] have introduced an edge-augmentation technique even simpler
than the previously mentioned multi-mesh. The idea is to start from a mesh, and to
add, at random, edges between any pair of nodes of the geometry. This implementa-
tion does not necessitate to coarsen any given mesh, and therefore the preprocessing
complexity is significantly reduced. The authors show that in their example, adding
20% of edges compared to the original connectivity was sufficient to ensure accurate
results, and to beat other methods such as the multi-scale graph network. Figure 3
illustrates this approach.

Figure 3: Random edge augmentation. The mesh structure is kept intact, and a pre-
defined number of edges are added at random between nodes (dashed black
lines).

This idea seems to be the obvious best solution, since it is by far the more simple in
terms of preprocessing complexity, and it yields better results. However, we identify
two drawbacks to this framework. The first one is that while, for convex domains, any
added edge 1s guaranteed to stay inside the domain, it is not true for more complex
geometries. Therefore, an added edge may break the topology of the mesh, and add a
link between nodes that should be unrelated. This observation is also true for the two
previous approaches, but even more so when the added edges are chosen at random,
and therefore are not extracted from a coarsened version of the initial geometry. The
second main drawback of this approach is a consequence of the following proposition.

Proposition 1 Let G be an undirected graph with n vertices. Suppose that the edges
of G are built at random. Let d be a positive integer. Then, for G to have a diameter of



d with probability 1, when n goes to infinity, the number of edges of G, that we denote
E(n), must verify
n'ti logé(n) < E(n) < n'taT, (1)

Proof 1 This result is a direct consequence of [13, Corollary].

The applications provided by the authors of [10] typically have around 500 nodes,
and they use 6 message-passing blocks. In order for the diameter of a random graph
of 500 nodes to be less or equal to 6, one would need around 1700 edges according to
theorem 1. If we generalize this result to a two-dimensional mesh with 500 nodes, and
an average number of edges of 3 times the number of nodes, one would need to add
around 200 edges, i.e around 15 % of the total. This reasoning is only an estimation,
since proposition 1 only applies for random graphs, and not for mesh-like graphs in
which random edges are added, but it still justifies the choice of 20% added edges.
While an increase of 20% in the number of edges is still reasonable, the scaling in

@ <n1+5 suggested by proposition 1 quickly becomes prohibitive when the number

of nodes increases. The randomness of the added edges may not be the most efficient
choice to reduce the graph diameter, and more optimal techniques, such as farthest
point sampling, may be of interest. The next section details our proposed approach,
based on this observation.

3 Proposed approach: Multi-mesh message-passing for
non-convex geometries

The proposed edge-augmentation procedure is the following. First, a mesh is given
as input. The mesh nodes are denoted {x}scq. The mesh connectivity in itself is
not used for the edges, but for the extraction of geometric operators. From this mesh,
the boundary faces F and their normal vectors N\ are extracted. Several key hyper-
parameters need to be decided. The edges will be built with radius graph approaches,
therefore the maximum number of neighbors by node Ncighbors, and the correspond-
ing radius 7o need to be fixed. Mid-range and long-range edges will also be added,
therefore the corresponding radius 7'megium, Tong Should be also decided beforehand.
The mid and long range edges are also built by radius graphs, but not for every node
of the mesh, to limit the computation complexity. Therefore, Npmig nodes a0d Niong nodes
nodes are sampled by farthest point sampling through the mesh nodes, and these nodes
are then used to build the corresponding mid-range and long-range edges. The use of
farthest point sampling is more efficient than pure random sampling, since it guaran-
tees that the whole domain is covered.

After this procedure, three levels of edges are present. The initial radius graph en-
sures information flow on the short scale, and the mid and long scale propagation is
ensured by the other added edges. Note that three levels are presented here, but the



same procedure could be extended to more levels. Once this connectivity has been
obtained, the full graph may not respect the initial mesh topology, some edges may
be present outside of the domain. To remove these undesirable edges, and to ensure
that information flows through the mesh topology and not according to euclidean ge-
ometry, a filtering layer has been added. This filter removes the undesirable edges,
with a simple procedure: for a given edge, if it goes through a boundary face, then
it goes through the domain, therefore it must be removed. This test has been im-
plemented with the Moller-Trumbore algorithm [19] because of its efficiency. This
method is a ray-triangle intersection test, therefore directly useful in our case. For a
given edge, a function INTERSECTSFACE extracts the boundary faces that are close
to this edge, and verifies if this edge goes through one of these faces following the
Moller-Trumbore procedure. This function takes as input the position of the edge, the
set of boundary faces and the related normal vectors. For an in-depth presentation of
the Moller-Trumbore algorithm, see [19].

Algorithm 1 summarizes the key steps of the proposed procedure. In addition to
the INTERSECTSFACE function, a FARTHESTPOINTS AMPLING function is also used.
This function takes as input the desired number of points, and samples this number of
points from the initial mesh {z};cq by farthest point sampling. Finally, we use the
function RADIUSGRAPH, which is a modification of the radius_graph function of
the PyTorch Geometric Python package [6]. Our version of RADIUSGRAPH takes as
input sampled nodes, the number of neighbors for each of this sampled nodes, and two
radiuses: a shorter and a longer one. Instead of sampling the edges on a ball centered
on a point, here, the sampled edges must have a length included between the shorter
and the longer radius. This ensures that the added mid and long range edges have the
desired lengths.

Figure 4 illustrates our added edges on a complex, 3 dimensional geometry, with
and without the Moller-Trumbore check. The geometry chosen, representing the
Olympic rings, is highly non-convex, and it is made of 76659 nodes. With no check,
edges are added outside of the domain, therefore modifying its topology and intro-
ducing non-physical shortcuts between parts of the geometry. On the contrary, with
filtering layer, the added edges seem to stay inside the domain.

This procedure has the drawback that the number of added edges cannot be directly
controlled, it is dependent on the number of invalid edges removed by the algorithm.
While in our experiments, we found that this limitation was not too restrictive, it is
possible to modify the algorithm 1 to add a corresponding number of valid edges.

4 Application on a three-dimensional, non-convex do-
main

In order to test the proposed edge augmentation algorithm, a challenging two-dimensional
geometry representing the Olympic rings has been selected. Because of its non-



Algorithm 1 Mesh-Based Radius Graph Construction with Méller-Trumbore Filtering

1: Initialization:

2:  Input: {xs}seq > Mesh nodes

3:  Input: Tshort, Tmediums Tlong > Short, medium, and long radius

4 Input: Niyid_nodes > Viong_nodess MVneighbors > Node and neighbor parameters
Preprocessing:

Extract mesh faces F and face normals A/
{zs}ses, s ¢ FARTHESTPOINTS AMPLING (Niid nodes)
{75} s€Sime ¢ FARTHESTPOINTS AMPLING( Niong nodes)

9: Processing:
10:  Egon <~ RADIUSGRAPH({%}scq, 0, Tshort; Neighbors)
11: Emedium — RADIUSGRAPH({xs}seSmida Tshorty "'medium Nneighbors)
12: Elong — RADIUSGRAPH({xS}SESlnngy T"medium rlonga Nneighbors)
13: Etotal < MERGE(Eshorta Ernedium7 Elong)

14: Filtering:
15: for all ¢ € Fiy, do

16:  if INTERSECTSFACE(e, F, ') then
17: Remove e from Fy

18: end if

19: end for

convexity and its high number of nodes, random edge augmentation would not be
straightforward, since it would introduce non-physical edges that would not respect
the topology of the considered domain. The target field that has been chosen is a so-
lution to the static heat problem, where the heat source is located in an extremity of
the domain. The target solution has been computed by the commercial finite element
solver Forge ® [1]. Note that the chosen domain is a two-dimensional cut plane of the
previous case, presented in figure 4, therefore this case exhibits the same challenges
in terms of non-convexity. The resulting mesh is made of 5104 nodes, and this sim-
plifications allows to compute the graph diameter with networkx [11], to assess the
performance of the different edge-augmentation techniques to decrease the graph di-
ameter. The restriction of the Moller-Trumblore algorithm to two-dimensional cases
is straightforward. Figure 5 illustrates the selected mesh, along with the target and
input fields.

To assess the capability of the models to propagate the information, the tested mod-
els are given as input the target field on half the geometry, a quarter on both sides. The
models are assessed on the remaining half, in the center. The models are trained to
minimize the mean squared error between the predicted and target fields on the whole
domain. The GNN chosen is an encoder-processor-decoder, similar to [21]. The en-
coders, decoders and edge and node processors are Multi-Layer Perceptrons (MLP)
with two hidden layers of width 64 and the Tanh activation function. The edge and



Figure 4: (top) Initial meshed geometry. (left) Added edges by farthest point sampling
(in red), with no previous check for valid edges with the Moller-Trumbore
algorithm. (middle, right) Added edges by farthest point sampling (in red).
The edges that do not stay inside the domain are identified with the Moller-
Trumbore algorithm, and removed.

Figure 5: Selected case. (top) Initial meshed domain. (left) Field given as input to the
tested models. (right) Target field.

node processors also have residual connections. The edge attributes are relative node
positions and the euclidean distance between the two nodes. All of the models have
been trained for 250 epochs with the Adam optimizer, and 50 epochs of the L-BFGS
optimizer in PyTorch [20]. Table 1 gathers the relative errors made by the tested mod-
els after training. ‘MLP’ refers to a simple MLP of width 64 and depth 3. ‘mesh
GNN’ refers to a GNN trained on the initial edge connectivity of the mesh. ‘radius
GNN’ is a GNN trained on a radius graph, where the radius has been chosen to be



equal to one-tenth of the span of the whole geometry. The maximal number of edges
by nodes is set to 25. ‘GNN - ours’ refers to our model, the same radius graph but
with additional nodes sampled by farthest point sampling, from which radius graphs
with higher radius values are built. 100 mid-range and long-range nodes are sampled.

Model Graph Diameter # MP blocks Relative error (%)
MLP 00 - 3.1

mesh GNN 232 5 2.6

mesh GNN 232 10 2.5

radius GNN 13 5 3.1

radius GNN 13 10 2.1

GNN - ours 7 5 0.12

GNN - ours 7 0 0.31

Table 1: Relative error made by each variant of the GNN and MLP after training.
The GNN architecture does not change, except for the number of message-
passing blocks, but the graph connectivity is changed. The corresponding
graph diameter is reported in each case.

It is of interest to note that the diameter is almost divided by two with our ap-
proach, with less than 4% more edges compared to the radius graph. The proposed
edge augmentation procedure allowed the tested GNNs to reach the smallest relative
error. The results for 5 and 10 message-passing blocks are similar, which is coher-
ent with the graph diameter equal to 7. Figure 6 shows the predicted field of the 5
blocks GNN with our edge augmentation technique. Even if the predicted field is not
perfectly smooth, the models trained on this graph connectivity were able to propa-
gate the information throughout the whole domain, due to the reduced diameter. The
computational complexity of our approach is on par with the radius graph-based mod-
els, since the added edges are optimized through farthest point sampling to cover the
whole geometry.

S Concluding remarks

Graph neural networks are ubiquitous in scientific machine learning. Their ability to
simulate complex physical phenomena with suitable inductive biases paves the way to
numerous applications. In this framework, graph connectivity is a sensitive topic that
can greatly impact the model’s performance. After presenting an overview of different
edge augmentation techniques for mesh-based graph structures, some limitations of
the current approaches have been highlighted, in particular when dealing with non
convex geometries. A novel method, based on geometric tools, is presented to address

10



Figure 6: Predicted field, GNN with 5 message-passing blocks and our enhanced

graph connectivity. The initial field has been well diffused throughout the
whole domain. The relative error is 0.12%.

this issue. The numerical experiment that is conducted proves the ability of our edge-
augmented graph neural network to propagate a physical field through challenging
geometries.
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