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Abstract

Finding architectural principles in facades is an important task for urban development.
Hence, using AI-based methods for an automated analysis seems obvious; but this also
entails certain requirements concerning the training data itself. A new facade dataset
with 14 segmentation masks was created and used for the training of deep learning
models to semantically segment elements within facades of Swiss buildings. Via a
rule-based approach, architectural principles such as rhythm lines and axes of sym-
metry can be derived from these elements. Those principles, especially in the context
of neighbouring buildings, form an architectural pattern that is partially quantifiable
to assure quality in design w. r. t. urban development.
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1 Introduction

Settlements in the alpine region have been experiencing a constant change due to
socio-economic and social processes. Urban development and architectural concepts
in the Swiss alpine region have been active research areas for many years. Especially
the decisions by the legislature have been a focus point in the field of urban planning.

During the last century, many historically valuable centres have been developed that
are nowadays in the focus of building activity and undergoing transformation. Hence,
the government has a strong motivation to protect, preserve, and carefully develop
those centres. For this reason, in the 1970s a unique inventory of the most outstanding
settlements was compiled: The Federal Inventory of Heritage Sites of National Impor-
tance (ISOS). The aim of ISOS is to collect and describe – on the basis of objective
criteria – settlements in Switzerland. It became an important cornerstone in the spatial
planning of the Confederation, the cantons, and the municipalities.

Based on the methodology of architectural contextualism, we have developed a tool
(Baumemorandum) for architecture offices and municipalities that works as guidelines
for assuring quality in design and urban development in critical, historical areas. The
Baumemorandum consists of three elements: fundamentals, context memorandum,
and facade memorandum. These are available – to date – in printed form only. Since
most of the essential information for construction projects are nowadays provided
by geographic information systems (GIS), it is therefore beneficial to make this tool
digitally available within the latter ones. Figure 1 shows an example of a street with
houses as part of a facade memorandum.

By making this tool accessible directly from GIS, the municipality’s decision-
making process becomes more transparent and the planning entity can take neigh-
bouring buildings into account. Viewing the planned project in the context of its
neighbourhood, spatial connections, design relationships, and architectural exceptions
can be considered. The representation of spatial relationships and the search for typi-
cal characteristics (architectural principles) were done manually (i. e. time-consuming
drawing work) and, thus, prone to errors. The processed data serves as a basis for
validation and interpretation by domain experts. Integrating the entire approach into
GIS finally enables the usage of the Baumemorandum in a larger context and lever-
ages simple analyses of old and new data. Combining regulations, specifications,
and information important to urban development into a single information channel
is an important step towards simplification of planning processes. It allows deciders
to streamline decisions and new developments as well as to support involved experts
such as architects. The digital Baumemorandum creates legal certainty, particularly
with regard to the question of appropriate integration into the townscape. As partner
of our project, Davos Monstein (Canton of Grisons) will be the first municipality in
Switzerland to implement the digital Baumemorandum.
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Figure 1: A development view as part of a facade memorandum – top row: true
coloured facades, middle row: developed view with reference-lines and axes
of symmetry conveying rhythms of facades, bottom row: outlines.

2 Deep learning methods

In this section, we briefly overview the process it takes to get from point cloud images
to elements of a facade. Discovering patterns and geometrical relationships within
image data is a distinct strength of deep learning (DL) methods [1]. Knowledge is
transferred via domain experts by annotating multiple masks on point cloud data col-
lected specifically for this use case, thus creating a customized dataset on which the
deep learning algorithms can learn to find the specific elements in facades. These el-
ements – in combination with a domain-specific set of rules – are used to establish
rhythm and symmetry as seen in Figure 1. Buildings all over the world follow similar
structures but facades and the elements within them may look very different. There
is a variety of windows, blinds, balconies, and so on. The design of these elements is
affected by things such as the time period, the country, or even towns and settlements.
This resulted in the creation of a facade dataset for Swiss buildings.

The semantic segmentation of the facade is the most critical step in the process of
finding characteristics of buildings. Every error in the segmentation result needs to be
handled (manually) by later stages of the process. For this reason, the development
and training of the deep learning model is essential for finding relevant characteristics.
Semantic segmentation of images is a distinct strength of deep learning models [2].
There are multiple advantages w. r. t. classical image processing. For example, DL-
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based approaches are able to recognise different types of objects that occur in a facade.
This is especially useful for objects that tend to look slightly different each time. In ar-
chitecture, objects such as windows, doors, or balconies never look exactly the same,
hence the detection and segmentation of those objects becomes more difficult.

Today, there exist many different approaches for window detection in facades, such
as convolutional neural networks (CNN) [3], Mask- [4] and Faster region-based con-
volutional neural networks (R-CNN) [5, 6], convolutional generative adversarial net-
works [7], hybrid approaches [8] , cascaded classifiers [9–11], YOLO [6], single shot
detectors (SSD) [7], atrous large kernel (ALK) networks [12] or models with prior
information [13]. Many of those show competitive performances on the task of win-
dow detection. Nevertheless, for our use case it was decided to concentrate on Mask
R-CNN and YOLO.

2.1 Dataset

The dataset was created by domain experts. Point clouds were captured by drones and
drivable camera systems and exported as images. For each image, a set of up to 14
masks was created. Out of the 14 masks, 8 were used for the training of the models.
Those were: gaps in the facade (windows and doors), window blinds, roofs, building
shell, building foundation, chimneys, dormers, and balconies. Figure 2 shows an orig-
inal point cloud image with the respective segmentation masks for windows and the
building shell. The masks were translated into labels and then used for training, valida-
tion, and testing of the different DL models. In total, there were 769 images captured,
these were split into a training set (577 images), a validation set (128 images), and a
test set (64 images). Obviously, the 14 segmentation masks are not equally distributed
over the 769 images (e. g. there are much more windows than dormers). Figure 3 (a)
shows the class imbalance in the test set representatively for the whole data set.

(a) Original image (b) Window mask (c) Building shell mask

Figure 2: Original point cloud image with respective segmentation masks.
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(a) Label distribution of the
test set.

(b) Normalized confusion matrix of the test set.

Figure 3: Characteristics of the test set.

2.2 Mask R-CNN

Mask R-CNN is a two-stage deep learning model that can be used for semantic seg-
mentation. It extends Faster R-CNN and is today state-of-the-art for a variety of tasks
including object detection and instance segmentation [14]. Mask R-CNN was part of
a series of experiments conducted with the new facade dataset. Even though the model
initially showed some promising results, the YOLO model finally convinced due to its
ease of use when in the future integrated into a product, coupled with its faster training
and inference times [15].

2.3 YOLO

YOLOv8 and YOLOv11 [16] are one-stage models for different computer vision tasks
such as object detection, oriented object detection, pose/keypoints detection, and in-
stance or semantic segmentation. They are based on previous YOLO architectures like
YOLOv3 [17]. Both models were tested in a series of experiments. The experiments
included changes in model size, model parameters, and model hyper-parameters. Ta-
ble 1 shows the metrics for each of the best model configurations. This includes
hyper-parameter tuning for multiple models. Compared to R-CNN models, YOLO
not only looks at regions of interest but at the whole image which helps speeding up
the process of object detection [18].

5



Model F1 (box) F1 (mask) mAP50 (box) mAP50-95 (mask)
yolov8l-seg 0.833 0.817 0.844 0.697
yolo11l-seg 0.828 0.801 0.840 0.687

Table 1: Performance metrics for YOLO models.

Eventually, a pre-trained large YOLOv8 model was fine-tuned with the facade
dataset to achieve accurate and efficient facade segmentation. Table 2 shows the com-
plete performance metrics on the test set for the chosen model. The small number of
balconies and the corresponding low value for the Box mAP50 is noteworthy. So, too,
are the very good values for the metrics on the building shell, despite the low number
of instances.

1 2 3 4 5 6 7 8 9 10 11
all 64 1364 0.896 0.778 0.844 0.697 0.877 0.764 0.820 0.458
gap 64 696 0.893 0.848 0.893 0.748 0.887 0.849 0.885 0.467
blinds 37 358 0.924 0.889 0.921 0.782 0.903 0.872 0.897 0.336
roof 64 69 0.945 0.841 0.919 0.823 0.941 0.841 0.893 0.535
shell 63 63 0.999 0.937 0.963 0.883 0.964 0.905 0.934 0.596
foundation 35 35 0.836 0.743 0.805 0.690 0.803 0.714 0.777 0.486
chimney 43 73 0.917 0.685 0.788 0.535 0.892 0.671 0.731 0.357
dormer 29 36 0.745 0.694 0.745 0.639 0.713 0.667 0.706 0.504
balcony 17 34 0.908 0.588 0.716 0.474 0.910 0.596 0.737 0.388

Table 2: Performance metrics for the best YOLOv8 model – 1: object class, 2: # im-
ages, 3: # instances, 4: precision bounding box (BB), 5: recall BB, 6: mean
average precision at IoU=0.50 BB, 7: mean average precision IoU=0.50 to
IoU=0.95 BB, 8: precision mask, 9: recall mask, 10: mean average precision
at IoU=0.50 mask, 11: mean average precision IoU=0.50 to IoU=0.95 mask

The confusion matrix of a multi class object segmentation result is a useful tool for
cross class comparisons and to find mix-ups between classes. Figure 3 (b) shows the
confusion matrix for the test result. Figure 4 shows an original image and the respec-
tive image with the segmentation result. The segmentation masks show the classes
of building shell, roof, chimney, balcony, gap, and blinds. The model can, after the
training, be deployed to a server where it can be used to segment facades. Inference
for the semantic segmentation can be done in reasonable time on CPU and does not
require an expensive GPU.
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(a) Original image (b) Segmentation result

Figure 4: Original point cloud image with respective segmentation result.

3 Architectural principles

The results from the facade segmentation are fed into a classical computer vision algo-
rithm. This algorithm is based on rules derived from two domain experts. These rules
reflect architectural principles and based on type, position, and shape of objects within
a facade some reference-lines and axes of symmetry are constructed. Reference-lines
highlight rhythmic patterns in a facade and together with an axis of symmetry (if
present) they form the facade’s aesthetic coherence. Figure 5 shows a facade with the
reference-lines and the axis of symmetry which were constructed on the basis of the
segmentation result in Figure 4.

(a) Facade with reference-lines (b) Facade with axis of symmetry

Figure 5: Facade with reference-lines and axis of symmetry.

3.1 Rules

Architecture and design can be difficult to formalize. The rules to reflect the archi-
tectural principles are based on experience and domain knowledge. One of the main
contributions to find formalized domain-specific rules to be applied to automatically
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segment facade images was the assessment and review of separate facades by an ex-
pert.

The computer vision algorithm for finding rhythmic and symmetry patterns follows
a multi-stage process. Reference-lines that build the rhythmic patterns are based on
the positions and shapes of the objects in the facade. Windows with open, half closed,
or completely closed blinds, with blinds that close from the sides or above, jalousies,
or sun blinds all contribute equally to the rhythmic pattern of a facade.

The algorithm to find a potential axis of symmetry in a facade consists of multiple
and recursive checks on axis candidates while simultaneously moving these candi-
dates based on the results of the different checks. The axis candidates depend on the
roof, the building shell, the position and shape of windows, doors and blinds as well
as the positions of these elements mutually to each other. If the axis candidate fails to
fulfil a criteria (e. g. the distance of a window is not the same as the one to the corre-
sponding window on the same floor on the other side of the candidate) the candidate
is moved by a margin depending on the distance with which the test was failed.

To accommodate the domain experts working with this tool, an editor was devel-
oped. This human in the loop approach of the process to find a facades’ aesthetic
coherence allows to rectify any potential error of the deep learning method. Finally,
the software for finding facade objects as well as rhythmic and symmetrical patterns
was integrated (together with the editor) into a GIS application for future usage by
domain experts.

4 Conclusions

A new facade dataset consisting of facade images from point clouds collected by
drones and drivable camera system was constructed. This dataset includes segmen-
tation masks for up to 14 classes of elements which can typically be found in facades.
The dataset was used in the training of different deep learning models for semantic
segmentation. Furthermore, a set of rules was derived for finding architectural pat-
terns in facades. Based on the segmentation result and the set of rules, reference-lines
and axes of symmetry were constructed to establish the rhythm and help to convey
architectural principles of a facade. As an outlook, our new DL model can be used to
(semi-)automatically create developed views, add new information such as building
textures to GIS, and show planned buildings in the context of the specific neighbour-
hood to help communicate specific characteristics of the established and the planned
buildings. Figure 6 shows an example of such a use case.
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Nevertheless, there are some limitations to this technology. For instance, the detec-
tion of structures important for spatial connections and design relationships is highly
dependent on the quality of data. Moreover, is it very difficult to find aesthetically
pleasing architectural patterns if they have not been trained before. Therefore, arti-
ficial intelligence will never decide on its own what is beautiful. However, artificial
intelligence will be able to recognize the extent to which a new building is able to take
up the typical characteristics of a specific village or settlement. In the end, decisions
will still be made by the building authorities and the population.

Figure 6: A developed view with a CAD model of a planned building in the context
of the neighbourhood.
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