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Abstract

Linear elastic material characterization of human trabecular bone is of interest, for ex-
ample, to simulate bone-implant systems. The direct mechanics method for comput-
ing stiffness tensors of trabeculae based on directly discretized computed tomography
scans is proven and available. However, characterizing the effective stiffness based
on microfocus CT scans is computationally expensive. We suggest a new, AI-based
method for characterizing volume elements used in direct mechanics approaches. The
goals are to reduce the required computational effort and cost while keeping a compa-
rable accuracy of the effective stiffness parameters that we can compare to the existing
analytical ground truth. Our approach assumes that binary segmented grayscale CT
images are 3-dimensional patterns that answer deformations with particular forces
and exhibit a specific effective stiffness. The paper describes the assumptions, train-
ing data, and software stack for AI training and inference. We conclude with expected
results, methodological limits, and an outlook.

Keywords: direct mechanics, finite elements, human bone, high-performance com-
puting, artificial intelligence, effective stiffness, stiffness
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1 Introduction

Trabecular bone is a calcified, porous tissue of thin struts and plates as in figure 1,
commonly found in, e.g., the scapula, vertebrae, and femur. It is embedded within
the bone marrow, forming the spongiosa, and plays a key role in bearing internal
and external mechanical loads. Healthy trabecular bone is essential for maintaining
mobility and quality of life.

Figure 1: The human femur is a load-bearing bone with an articulate trabecular struc-
ture inside [1].

Surgical intervention may be required, e.g., in cases of fractures or chronic condi-
tions like arthrosis, often involving metallic implants [2–4]. These implants vary in
shape and function but frequently rely on surrounding trabecular bone for stability. A
prominent example is total hip arthroplasty (THA), where a metal stem is implanted
into the femur to alleviate pain and restore joint function. However, implants are sub-
ject to wear, and their lifespan is limited [5, 6].

Radiological images and anatomical preparations highlight the importance of tra-
becular bone in preventing implant failure, such as aseptic loosening caused by me-
chanical rather than inflammatory reasons [7]. Additional factors such as initial im-
plant positioning can affect outcomes, suggesting patient-specific simulations may
improve success rates [8]. Governed by Wolff’s law and the mechanostat theory, bone
remodels continuously to adapt the bone structure in response to mechanical strain
[9, 10]. This adaptation process, known as mechanotransduction, operates throughout
life [11].

Mechanical models of human bone are of significant research interest because they
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allow researchers and engineers to predict and improve the performance of bone-
implant systems. Mechanical models allow researchers and engineers to simulate
these interactions, account for patient-specific anatomical and material variability, and
explore how bones respond to altered loading conditions over time through processes
like remodeling. By accurately determining the effective stiffness of bone, mechani-
cal models support the development of longer-lasting, better-integrated implants and
inform clinical decisions aimed at reducing revision surgeries and improving patient
outcomes.

2 State of Research

The effective stiffness is a boundary condition-driven parameter of, e.g., human tra-
becular bone with stiffness as the resistance against deformation. Hook’s law

σij = Cijklϵ
kl (1)

contains the stiffness C as a transfer function between the stress σ and the strain ϵ with

i, j, k, l ∈ {1, 2, 3} (2)

that sum over sets of repeated indices. This notation relies on Einstein’s summation
convention. Two Lamé constants,

µ = G =
E

2(1 + ν)
(3)

and

λ =
Eν

(1 + ν)(1− 2ν)
(4)

connect the Young’s modulus E, the poisson ratio ν and the shear modulus G. These
well-known engineering parameters give the isotropic stiffness matrix
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to, e.g., describe a monolithic material. Isotropy in mechanics denotes the material’s
uniformity in all orientations. Human trabecular bone, however, is a heterogeneous,
non-repeating structure that exhibits anisotropic behavior. The mathematical descrip-
tion
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of such a material requires 21 linearly independent parameters. Special cases are
described with fewer parameters. For example, orthotropic materials show three per-
pendicular symmetry planes and only require nine linearly independent parameters.

Various methodologies exist to extract the initially multiaxial linear elastic proper-
ties based on fabric tensors that link bone microarchitecture to the fourth-rank stiffness
tensor [12]. However, accurate mechanical modeling of the trabecular bone requires
the precise but computationally demanding finite element method (FEM) based on
direct discretization of micro-CT (mCT) scans as in figure 2 [13].

Figure 2: The microfocus CT scan of a human femoral head with a 3-dimensional
equidistant voxel spacing of 15 µm to capture all relevant structural de-
tails [14]. Other bone tissues with trabeculae are of interest as well.

High-resolution CT scans, as depicted, are 3-dimensional equidistant voxel grids
with image grayscales representing the bone density. The basic characteristic of this
exemplary mCT image is given in table 1.
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Axes x y z
Dimensions 2940 2940 2141
Resolution (mm) 0.015 0.015 0.015
Number of Voxels 18505947600

Table 1: Parameters of the exemplary mCT scan FH01-1.

For local anisotropy, apparent material properties can be computed for cuboid-
shaped volume elements (VEs) under specific boundary conditions. However, rep-
resentative volume elements (RVEs), which are ideally independent of loading con-
ditions, are theoretically valid only in two scenarios: as unit cells in periodic mi-
crostructures or as statistically homogeneous volumes containing an infinite number of
infinitesimal elements [15]. Trabecular bone, neither periodic nor infinitely sampled,
challenges both assumptions, limiting the theoretical applicability of RVE concepts.

Hill presented a method to compute effective stiffness C̆ matrices of VEs. How-
ever, these matrices depend on the applied boundary conditions [16, 17]. Computed
tomography images are decomposed into many small VEs as shown in figure 3.

Ξ𝑎=9.6 → Ξ𝑎=4.8
Ξ𝑎=4.8 → Ξ𝑎=2.4

Ξ𝑎=2.4 → Ξ𝑎=1.2

Figure 3: The VE decomposition sizes to extract cuboid subsets of the mCT scan are
introduced by Ralf Schneider [18]. Cavities in human trabecular bone gov-
ern the smallest sensible VE size, with larger sizes following in increments.

A promising alternative comes from the work of Ralf Schneider, who in 2016 in-
troduced a method to compute effective numerical stiffnesses [18]. These resemble
element stiffness matrices and can be used to assign material properties to continuum-
level FEs, making them suitable for simulating bone-implant systems. His implemen-
tation also computes the effective stiffness with a finite element model and leads to
the required 21 linearly independent parameters C̆ij . Ralf Schneider’s implementa-
tion of the directly discretizing voxel-FE conversion with cuboid volume elements is
best visible in figure 4, with the outline of the VE shown with grey lines. However,
computing linear elastic effective stiffness parameters with large finite element mod-
els is compute-intensive, leading to the requirement of high-performance computing
(HPC) systems.

The characterization of the patient-specific scan of figure 2 is best described by,
e.g., focusing on orthotropic parameters as they already give an impression on the
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Figure 4: The exemplary cuboid volume element (VE) of edge length a = 1.2mm con-
tains a binary segmented bone structure split into sub-meshes for computa-
tion on a few too many compute units. The colors represent the assignments
to specific processors for computation.

bone’s behavior. Since we decompose the CT scan into many volume elements, scat-
terplots of these VEs material parameters, as in figure 5, can help to derive statistical
knowledge about the trabecular bone structure.

3 High-Performance Computing

The software stack called Direct Tensor Computation (DTC), developed by Ralf Schnei-
der and Johannes Gebert, is implemented with Fortran, the Message-Passing Interface
(MPI) [19], the Portable, Extensible Toolkit for Scientific Computation (PETSc) [20],
and METIS mesh decompositioning [21]. MPI for general communication and PETSc
for MPI-based solving of sparse matrix linear algebra allow for massively parallel
computations. Computational efforts relating to the VEs Ξ are best quantified as in
table 2.

VEs of all sizes are subsets of the mCT image as in figure 2 and table 1; hence, the
initial volume of interest is constant. Accordingly, the number of VEs extracted from
an mCT can vary. While we can compute up to about 200000 VEs at the minor scale
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Figure 5: The relationships of the orthotropic material parameters of the CT scan as
in figure 2.

with only two processors used per VE, we already need several thousand processors
for large VE sizes, but we then deal with a smaller number of VEs to compute.

Not only are thousands of processors running concurrently required, but the mem-
ory requirements is also high. We computed the ground truth data on Hawk, a super-
computer of the High-Performance Computing Center Stuttgart (HLRS), Germany. In
this case, two gigabytes of memory per core at 128 cores per compute node are avail-
able at a total memory bandwidth of 380 GB

s . The communication across compute
nodes relies on an Inifiniband 200 GBit network with the topology of a 9-dimensional
hypercube.

From the perspective of a high-performance computing center, high energy usages
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Ξa (mm) nΞ nc

0.6 191825 2 to 16
1.2 25865 2 to 32
2.4 3484 16 to 1024
4.8 455 64 to 2048
7.2 143 2048 to 4096
9.6 40 4096 to 8192

Table 2: VE sizes, numbers of grid-parallel VEs contained in the mCT scan, and the
number of processors required.

are an issue from an environmental and a cost perspective with several hundred kWh
per simulation, especially for large VE sizes Ξa.

From a user’s perspective, HPC resources are a significant hurdle to compute, e.g.,
tensors of human trabecular bone. Since these HPC systems are expensive and their
operation is complex, the biomechanical researcher does not have these computers
at hand; he instead has to apply to compute with them. In addition, the software
must support the hardware environment of the supercomputer, a task that might be
straightforward with readily available software. Setting up the computing environment
may take a few years if the researcher needs to write software from scratch.

All in all, there is a justification for methods to avoid using HPC resources.

4 Research Question

Previous sections outlined the biomechanical motivation, goal, and implications of us-
ing HPC systems required for a direct mechanics approach with high-resolution CTs.
Hence, we formulate a straightforward research question: Can we significantly re-
duce the computational effort without losing the accuracy of the solution? With the
previous research by Ralf Schneider, precise data on all VE sizes and their mechani-
cal behavior are available as the ground truth for any comparison with our AI-based
approach.

5 AI-based effective Stiffness

Based on our experience using AI in HPC applications, we assume that binary seg-
mented grayscale CT images are 3-dimensional patterns that answer deformations
with highly specific forces and, therefore, exhibit a quantifiable effective stiffness. AI
systems are renowned for their ability to recognize patterns. However, we must prove
that the anisotropic parameters, expressed as floating point numbers, are accurately
determined during inferencing.
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We expect an answer to the research question by providing readily trained neural
networks that can run on common workstations rather than on HPC systems. Suppose
we observe a high correlation (r2 > 0.9) between the analytical ground truth and
the AI-based anisotropic parameters. In that case, we can reduce the computational
effort and lower the boundaries to access this method in clinical, industrial, or research
environments.

This paper does not present the final results but suggests a method. Our goal is to
describe a path to AI-driven direct mechanics approaches and discuss potential pitfalls.

5.1 Approach

We rely on two major components to solve the research question. First, we use the
CT data in their corresponding volume element to provide an input image. Second,
we know the ground truth through the analytical analysis as described in previous
sections. The input CT images of all VEs are assigned their corresponding effective
stiffness with up to 21 linearly independent parameters to describe the linear elastic
mechanical anisotropy. We then train the neural network with about two-thirds of
the available data. Once the training is completed, we analyze the AI’s accuracy by
inferencing the test VEs, which consists of the remaining third of the available data.
Furthermore, we decided to start training different neural network architectures. In
addition, we increase the complexity by starting with

• six out of 21 linearly independent parameters C̆ij ,

• continue with orthotropy (nine of of 21 parameters), and

• extend the method to the full set of 21 parameters.

We proceed with these listed steps once the neural network architecture is promis-
ing and the results are reasonable. Both aspects will be the subject of ongoing discus-
sion.

To predict the effective stiffness tensors from 3-dimensional image data, we begin
with convolutional neural networks (CNNs). CNNs have shown great potential in
image processing considering their relatively simple architecture [22]. Such networks
are especially suitable for classification tasks, which are different from our approach
because predicting entries of a 4th order tensor is well suited for regression. Therefore,
we process the output of the convolutional layers using fully connected linear layers.
The last layer will not use an activation function in order not to limit the range of
values for tensor component entries. Training on the dataset of figure 2 with a voxel
spacing Ξs of 15 µm and the exemplary cuboid VE’s edge length Ξa gives

nvox =
⌊Ξa

Ξs

⌋3
=

⌊ 0.6mm
0.015mm

⌋3
= 64.000 (7)

voxels per VE. All neural networks therefore require a high-dimensional input, no
matter the actual VE size.
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5.2 Software Stack

We aim to process biomechanical data based on image processing and regression
methods. For choosing the software stack, we consider the underlying biomechan-
ical complexity and the rationale of the bitter lesson by Richard Sutton [23]. We,
therefore, do not aim for complex initial networks or training techniques; rather, we
aim for a large amount of verified and correct training data.

The image data of the volume elements is read from *.vtk files and converted to
numpy arrays by calling the vtk python libary [24]. We use Pytorch [25] to set up the
neural network’s architecture. In order to train the network, we map each volume ele-
ment to its corresponding analytical effective stiffness tensor. The Pandas library [26]
is used to read and process *.csv resembling files that contain the analytical stiffness
tensor for each volume element.

5.3 Training data

Supervised learning benefits from a large amount of training data, while overfitting has
to be avoided [27]. As per table 2, the VE size Ξa=0.6 allows for the largest number
of samples. Hence, we start with this decomposition. Other VE sizes Ξa will follow
once the characteristics of the neural network are understood. Large Ξa results in
comparably few available VEs for training and test inferences. For example, Ξa=2.4

only provides 3484 VEs with a verified mechanical tensor available.
Getting more training data is of significant interest to improve the results of the

method. However, the number of CT scans analyzed by analytical direct mechanics
computations is scarce as the CT scans and HPC resources are expensive. To over-
come these limitations, we multiply the existing data by tilting the input images by
90 degrees per step in all available spatial orientations that are grid parallel to the
original coordinate system. Since the VEs are cubes with the same number of equidis-
tant voxels in all three dimensions, the VEs are always fed into the neural network
similarly without the neural network recognizing that it reads the same VE several
times. It is crucial to correctly represent the tilting of the VEs in their corresponding
effective stiffness tensor, which we use as a ground truth for training and inferencing.
Additionally, the VEs can rotate 90 degrees around their x, y, and z axes, giving four
positions per VE surface. By adjusting the effective stiffness tensors accordingly, up
to 24 configurations of the identical, verified ground truth are available, rendering in
large quantities of training data. If further research shows that even more training data
is required, we may mirror existing VEs. Entirely artificial, analytically verified train-
ing data can be computed using synthetic structures. However, mirrored and synthetic
VEs require careful consideration of their validity for training an AI that analyzes
human trabecular bone.

Microfocus computed tomography images are grayscale data used as a proxy for
CT absorption. The absorption of X-rays closely correlates with the tissue’s density,
which, again, is a proxy for the elasticity and other mechanical parameters of the tis-
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sue depicted by the corresponding voxel. As implemented by Ralf Schneider, direct
mechanics approaches rely on a binary segmentation [18]. Software converts all vox-
els above a user-defined threshold to a finite element. For the AI-based approach, we
still use binary segmented data. The reason is the resulting pattern, which we expect
to simplify the neural network’s task. In later stages, non-segmented, original data are
of interest.

6 Conclusions

We describe a probable path towards effective stiffness tensors of human trabecular
bone based on microfocus computed tomography data, which we infer with an AI. The
neural network-based approach for image and shape recognition with result vectors
representing mechanical stiffness tensors is considered feasible. We have clarified all
the steps required to train a suitable neural network and infer future results.

Near future research will confirm or neglect our method. More refined networks
and training data will improve the results. However, we will have to prove if the pre-
cision of the results suffices for clinical applications or industrial usage with different
materials.
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