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Abstract 
 

The article presents a Digital Twin of the reinforced concrete slab to analyse the load-

bearing capacity using artificial intelligence algorithms. To achieve this goal, the 

authors developed three-dimensional parametric numerical model of slab using the 

finite element method (FEM). When design the numerical model of reinforced 

concrete members, it is particularly important to select the concrete material model, 

the type of finite elements of concrete and reinforcing bars, and interactions between 

these elements. The parametric model served as the base for generating a 

comprehensive set of solutions, which were subsequently used to train an artificial 

neural network (ANN). This neural network was designed to predict the behaviour of 

the slab. By training the ANN with this extensive dataset, the authors of the paper 

aimed to create an efficient and accurate tool capable of reproducing the structural 

characteristics of the reinforced concrete slabs. For all analysed variants, boundary 

conditions were assumed reflecting the slab restrained over the entire perimeter. The 

numerical analysis was carried out in the ADINA System program. 
 

Keywords: digital twin, artificial neural network, finite element method, reinforced 

concrete, genetic algorithm, slab. 
 

 

1  Introduction 
 

Reinforced concrete (RC) slabs are a structural element that transfers loads to beams 

and columns. Traditional steel bars used as reinforcement of slabs are subject to 

a natural and inevitable corrosion process, especially in a highly aggressive 
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environment, which adversely affects the ultimate limit states (ULS) and 

serviceability (SLS) of the entire structure of concrete slabs [1].  
 

 

The reaction of reinforced concrete slabs and beams to static and dynamic loads 

has been studied in recent years not only by experimental tests, but also with using 

numerical simulations. When design the numerical model of reinforced concrete 

members, it is particularly important to select the concrete material model, the type of 

finite elements of A used the Concrete Damage Plasticity (CDP) material model. 

Cracking under tension and crushing under compression of the concrete are 

considered the two common failure mechanisms of the CDP model. The reinforcing 

bars behaviour in the numerical models presented in [2–6] was introduced as elastic–

plastic material model.  
 

 

When selecting the numerical model of reinforced concrete structures, the size of 

a finite element mesh should also be taken into account. A summary of the mesh sizes 

that was used in the works [2–10] to simulate reinforced concrete slabs is presented 

in Table 1. In addition to the dimensions of the finite elements, information on the 

type of selected elements as well as the edge length ratio was selected.  The edge 

length ratio was defined as the ratio of the concrete finite element length and the slab 

edge length, where hf was taken as the edges corresponding to the height of the slab, 

and lx was taken as the edges corresponding to the length of the longest edge of the 

slab. 
 
 

Particularly noteworthy is work [2], which presents the validation of the numerical 

model with the results of experimental tests of a two-way reinforced concrete slab 

subjected to impacting drop weight loading. A continuum 3-D 8-node solid element 

(C3D8R) was used to discretize concrete part. The reinforcing steel bars was modelled 

by a 20 mm long 2-node beam elements. The model was validated taking into account 

the change in the mesh size of the concrete slab, in which a single finite element was 

equal to 10, 15, 20 and 25 mm. The 10 mm element model with a 16% displacement 

difference was found to be adequate to predict the slab response in terms of peak 

displacement under the considered impact load. 
 
 

The authors of paper [3] presented the results of an experimental evaluation of the 

use of hemp fibre reinforced polymer (HFRP) fabric sheets as an alternative to carbon 

fibre reinforced polymer (CFRP) sheets for punching shear strengthening of 

reinforced concrete slab-column connections. The work [3] also presents the results 

of numerical calculations carried out using the finite element method with the 

ABAQUS software. The concrete slab was simulated with 8-node elements of the 

C3D8R type. The concrete damaged plasticity (CDP) method was adopted for 

modelling the concrete material. A mesh size of 10 mm was used. The reinforcement 

was modelled as a 2-node linear 2-D truss element (T3D2) embedded in the concrete 

element assuming a perfect connection between both materials. A mesh size of 5 mm 

has been introduced for steel bars. The numerical predictions showed good agreement 

with the experimental results. 
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Pa-

per 

Software Concrete slab 

finite elements 

Mesh size 

of 

concrete 

slab, mm 

Edge 

length 

ratio, % 

Reinforce-

ment finite 

elements 

Mesh size 

of 

reinforce-

ment, mm 

[3] ABAQUS 8-node, 3D solid 

elements C3D8R 

10 13 for hf 

1.5 for lx 

2-node, 

linear truss 

elements 

(T3D2) 

5 mm 

[2] ABAQUS 8-node, 3D solid 

elements C3D8R 

10 13 for hf 

1 for lx 

2-node 

beam 

elements 

20 mm 

[4] ABAQUS 8-node, 3D solid 

elements C3D8R 

15 25 for hf 

1.6 for lx 

2-node, 

linear truss 

elements 

(T3D2) 

15 mm 

[5] ABAQUS 8-node, 3D solid 

elements C3D8R 

20 13 for hf 

0.9 for lx 

2-node, 

linear truss 

elements 

(T3D2) 

20 mm 

[6] ABAQUS 8-node, 3D solid 

elements C3D8R 

23 29 for hf 

1.7 for lx 

2-node, 

linear truss 

elements 

(T3D2) 

23 mm 

[7] ANSYS 8-node, 3D solid 

elements 

SOLID185 

80 × 80 × 

50 

25 for hf 

4 for lx 

− − 

[8] ANSYS 3D solid (Solid-

65) elements 

~50 2.9 for hf 

4 for lx 

linear truss 

elements 

(LINK-

180) 

− 

[9] ADINA 

System 

27-node, 3D 

solid elements 

~187 50 for hf 

5 for lx 

2-node, 

linear truss 

elements 

~187 mm 

[10] ADINA 

System 

27-node, 3D 

solid elements 

60 30 for hf 

1 for lx 

2-node, 

linear truss 

elements 

60 mm 

Table 1: The summary of the mesh sizes used in the FEM models.  
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This article analyses the ultimate limit states ULS (stresses in rebars and concrete) 

and serviceability limit states SLS (cracks and deflections) of single-field concrete 

slabs, fixed around the perimeter, reinforced with steel bars (Figure 1) assessed by 

developed Digital Twin based on artificial intelligence algorithms. To achieve this 

goal, the authors developed three-dimensional parametric numerical model of slab 

using the finite element method (FEM). The numerical analysis was carried out in the 

ADINA System program. The parametric model served as the base for generating a 

comprehensive set of solutions, which were subsequently used to train a neural 

network. This neural network was designed to predict the behaviour of the slab. By 

training the neural network with this extensive dataset, the researchers aimed to create 

an efficient and accurate tool capable of reproducing the structural characteristics of 

the reinforced concrete slabs.  
 

2  Materials and methods 
 

The subject of the work was slabs with dimensions of 5400 × 5400 mm, made of 

concrete class C20/25 with a modulus of elasticity Ecm = 30 GPa. The material data 

of the concrete were adopted on the basis of EN 1992-1-1 [11]. Steel rebars (Figure 

1) were used for two-way reinforcement of the slabs. The lower reinforcement was 

placed over the entire surface of the slab and the upper reinforcement was placed 

around the perimeter in a strip 900 mm wide. Reinforcement material data are 

presented in table 1.  
 

 
Figure 1: Graph of reinforcement of concrete slabs analysed using numerical 

models. 
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Type of rods  

Material data 

Young's modulus E, 

GPa 

Poisson's 

ratio 

Density, 

kg/m3 

Steel bars 200.00 0.30 7850 

Table 1: Properties of applied reinforcing bars. 
 

The thickness of the slab (hf), diameter of lower (1) and upper (2) reinforcement 

bars and spacing of the rebars (sy1) were parameters changed in the numerical model. 

The combination of parameters given 2160 cases for the developing of artificial 

neuron network. The parameters were as following: 

− thickness of the slab (hf): 100, 150, 200, 250, 300, 350 mm; 

− diameter of lower (1) reinforcement: 6, 8, 10, 12, 14, 16, 18, 20, 22 mm; 

− diameter of upper (2) reinforcement: 6, 8, 10, 12, 14, 16, 18, 20, 22 mm; 

− spacing of the bars (sy1): 60, 80, 100, 120, 140, 160, 180, 200 mm. 
 

The analysed slabs were loaded of 10 kN/m2 corresponding to a very heavily 

loaded warehouse floor. The calculations assumed construction class S4 according to 

EN 1992-1-1 [11] and XC3 exposure class according to EN 206 [12]. The nominal 

cover for the reinforcing bars in the was assumed to be cnom = 35 mm. 
 

The finite element mesh of the slab model with marked boundary conditions is 

shown in Figure 2.  

 
 

 
Figure 2: Finite element mesh of concrete slab: a) whole slab, b) lower rebars,  

c) upper rebars. 
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In the numerical model, a non-linear analysis was used, taking into account large 

displacements and large strains. A non-linear model of the concrete material available 

in the ADINA System program and a plastic-bilinear model of the material of the 

reinforcing bars were adopted. The concrete slab was modelled using 27-node 3D-

solid elements. Rebar elements were used to model the reinforcing bars. In the 

numerical model of the slab, the finite element method was used to describe the impact 

of mechanical loads on displacements, type and location of cracks in concrete. 

Numerical calculations were performed using the ADINA System [13]. 
 

3  Results and discussion of parametric FEM model 
 

Based on the numerical analysis, the deflection values of the reinforcement concrete 

slab from the given loads, were obtained. For each variant, stresses in rebars as well 

as in concrete component and type and location of cracks were also analysed. 
 

The results of the stresses distribution in rebars of the slab with a thickness of 200 

mm reinforced with  = 12 mm bars were shown in Figure 3 and Figure 4. The 

maximum value of tensile stress in lower reinforcement is located at the center area 

of the slab. However, the distribution of tensile stresses in rebars is almost circular. In 

the lower reinforcement made of SRB bars, compressive stresses (12.16 MPa) reach 

higher values than tensile stresses (4.28 MPa). 
 

The distribution of stresses in the upper reinforcement made of SRB bars is similar. 

The reinforcement is predominantly in tension, and the maximum values occur in the 

middle of the edge in the slab restraint edge. Except that the maximum tensile stress 

in bars is 16.49 MPa. 
 

 
Figure 3: Axial stress in rebars of slab reinforced with  = 12 mm bars. 

 

The results of the size of displacements and the type of cracks for the concrete slab 

reinforced with  = 12 mm bars are shown in Figure 4. Distribution of displacements 
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indicates that the slab does not sag around the perimeter. What is the effect of slab 

restraint. The maximum deflections occur in the middle of the slab span. However, on 

the basis of the distribution of cracks (Figure 4c) it was observed that during the 

application of a load of 10 kN/m2 on the upper surface of the slab, in the area of the 

middle part of the edge, there are cracks marked no. 1, which corresponds to open 

cracks. During the application of the load of 100 kN/m2 (Figure 4d) on the upper 

surface of the slab, there are no cracks only in its central part and corners. In the 

remaining area, open cracks (no. 1), closed cracks (no. 2) and concrete crushing (no. 

3) can be observed.  
 

 
Figure 4: Results of numerical analysis of slab reinforced with  = 12 mm steel bars: 

a) displacement distribution at load of 10 kN/m2, b) displacement distribution at load 

of 100 kN/m2, c) cracks at load of 10 kN/m2, d) cracks at load of 100 kN/m2 [14]. 
 

3  Artificial neural networks 
 

The samples generated by numerical model were used to develop the artificial neural 

network. The artificial neural network was constructed for regression. The Multi-

Layer Percep-tron (MLP) with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

optimization algorithm was utilized for training. The total of 2160 samples were used 

to build neural networks. Train-test splitting was used. The samples were divided into 

three groups: 90% for training the network (learning set), 5% for selecting the network 

(validation set), and 5% for testing the quality (testing set). The data used for the 

design of ANN was normalized using the following linear function: 
 

𝑦𝑖 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
           (1) 

 

yi – new value of sample xi which is scaled, 

xi – scaled sample, 

xmin – minimum value of x set, 

xmax – maximum value of x set. 
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The learning process was monitored by observing changes in error values across 

different learning epochs. Training was halted before overfitting could occur. The 

regression network learning process was assessed by observing the change in Sum 

Square Error (SSE). Adjusting the weights and bias in the input and hidden layers 

were used as ingredients to reduce the error rate. Sum Square Error was considered: 
 

𝑆𝑆𝐸 = ∑ (𝑑𝑖 − 𝑦𝑖)
2𝑁

𝑖=1

           (2) 

di – dependent variable, 

yi – predicted output. 
 

The random seed was equal to 3. The accuracy of designed ANN was assessed by 

coefficient of determination R2. This value represents the extent to which the variance 

in the dependent variable can be explained by the independent variables. Structure of 

designed artificial neural network was presented in Figure 5. 
 

 
Figure 5: Structure of designed artificial neural network. 

 

Based on the ANN model, the deflection values of the reinforcement concrete slab, 

the minimum and maximum values of stresses in the lower and upper reinforcement 

bars as well ass the minimum and maximum values of stresses in the concrete slab in 

its support and mid-span zone as well as the type and location of cracks were analysed. 
 

Traditional optimization and machine learning are both techniques used to solve 

problems, but they approach problem-solving in different ways. Traditional 

optimization is used to find the best solution to a well-defined problem with known 

constraints and objectives. It employs mathematical methods to find optimal 

solutions. Traditional optimization is generally rigid since the model and constraints 

are predefined. If the underlying problem changes, the optimization process may need 

to be adjusted or completely redefined. Depending on the problem, optimization can 

be computationally expensive but is often more manageable when the problem is 
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small-scale, well-defined, and mathematically structured. In traditional optimization, 

once an optimization process is set, it does not adapt unless reconfigured manually. If 

the system's parameters or environment changes, the model must be updated or 

resolved. 
 

Machine learning is dedicated to discovering patterns in data. The relationships 

between variables are not explicitly defined, and solutions lack clear definition. 

Machine learning adapts through learning from examples, offering greater flexibility 

compared to traditional optimization methods due to its ability to adjust to new data 

and learn over time. Techniques such as reinforcement learning enable models to 

continuously enhance their performance as they acquire more experience or data. 

However, machine learning can be computationally demanding, particularly when 

dealing with large datasets or deep learning models. Training ML models may require 

substantial resources, although this process generally only needs to be performed once 

or periodically with the introduction of new data. ML models possess the capability 

to dynamically adapt to new data. For instance, a model can undergo periodic 

retraining or employ methodologies such as online learning to improve as new data 

becomes available. 
 

4  Conclusions 
 

− The results of numerical calculations showed the following relationship: the 

lower the reinforcement coefficient, the greater the deflections of the slabs, which 

proves that the numerical model of the slab was properly built.  

− Crack initiation in concrete occurs under a load of 10 kN/m2 and can be observed 

in the form of open cracks located on the even surface of the slab, in the area of 

the center of the restrained edges.  

− Digital Twins can be represented through theoretical models, numerical 

simulations, as well as artificial neural networks. Developed in this work Digital 

Twin using ANN algorithms was designed to predict the load carried by RC slabs. 

The functionality of developed Digital Twin is to predict results for various 

combinations of parameters without testing them directly. The designed ANN 

model is able to predict the results of the calculations of RC slab quite accurately 

based on training data, offering a cost-effective and time-saving alternative to 

experimental and numerical data collection. 
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