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Abstract 
 

In this paper, layered track models are investigated in terms of detecting cases that 

may be dangerous for track design. Usually, track design is guided by 

recommendations to avoid exceeding the critical velocity, which is determined as the 

lowest velocity of waves propagation in the structure, which in turn is equal to the 

critical velocity of a single moving constant force. Such reasoning does not take into 

account the anomalous Doppler effect causing a moving inertial object to become 

unstable. It has been shown in the author's previous works that this effect becomes 

more dangerous when two close objects are considered, and is generally exacerbated 

by increased damping, which is contrary to common sense. This paper  sheds more 

light on this deleterious effect and discusses its implications for track design. 
 

Keywords: layered track models, critical velocity, instability, moving proximate 

masses, integral transforms, instability lines. 
 

1  Introduction 
 

Promoting rail transport stands out as a fundamental strategy in combating climate 

change and controlling carbon emissions. Consequently, there is a growing call to 

enhance rail infrastructure, focusing on augmenting track capacity through measures 

such as increasing travel speed and frequency of passing trains, and accommodating 

higher axle loads. In track design, a fundamental consideration is the critical velocity 

of the moving force, reflecting the lowest velocity of wave propagation within the 

supporting structure, as a result of dynamic interaction among all components. 
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However, for the above reasons, the problem of instability becomes more significant. 

Historically, this challenge was circumvented as a single moving mass typically 

veered into unstable behaviour solely within the supercritical velocity domain, 

preventively addressed in design protocols. However, a new complication arises with 

the dynamic interaction of two proximate moving masses, a complication aggravated 

paradoxically by increased damping. This issue has already been covered in the 

author's prior research. Nonetheless, the fact that such masses ought to be linked by a 

rigid bogie reveals new perspectives on the matter. 
 

A considerable amount of work has already been presented in this field, proving 

that it is a field of significant importance and still very active. Published research can 

be classified using several criteria: according to the structure type into finite or 

infinite; or according to moving objects to structures subjected to moving force(s) or 

moving inertial object(s). The separation can also be made according to supporting 

structure arrangement into continuous (2D or 3D), or discrete, which usually consists 

of several layers. The moving force problem is generally much simpler, implying that 

fully analytical solutions can be derived in several cases.  
 

Among pioneering works on the instability of moving inertial objects one can 

mention [1-3]. In [1,2], the problem of instability is exemplified on several masses 

moving on a finite beam. In [3], vibrations induced by single mass moving on a 

viscoelastically supported infinite beam are solved by integral transforms and 

numerical integration. The instability of single moving mass is further detailed in [4-

5], where the solution is presented with the help of the D-decomposition method. 

Several inertial objects traversing finite structures have been recently analyzed in [6-

8]. Other works on infinite structures are also implementing the D-decomposition 

method, which is then combined either with the dynamic Green´s function [9-12] or 

integral transforms [13,14]. It is commonly assumed that the mass is in permanent 

contact with the beam, [13,14], however, in some works a contact spring is introduced, 

[9-12]. None of the works on instability of moving inertial object(s) is making 

reference and connection to the critical velocity of the moving force. A new approach 

to identify instability by tracing the so-called instability lines and connection with the 

critical velocity of the moving force which is essential to understanding instability is 

given in author’s works [15,16]. This approach is also suitable for the problem of two 

moving proximate masses, where a strong dynamic interaction can significantly alter 

the onset of instability. Using the mentioned approach, the conditions under which the 

results can be superposed can also be derived and cases where the dynamic interaction 

induces instability at a velocity lower than the lowest critical velocity of the moving 

force can be identified. Additionally, this approach can be readily extended to moving 

oscillators. A summary of several conclusions about layered models is presented in 

[17], and methods for identifying the necessary parameters for such models are 

described in detail in [18]. Some of the irregular cases are already summarized in [19], 

and the issue of instability of a single moving mass on a three-layer model is 

extensively detailed in [20], especially with respect to the damping level. A recent 

work [21] brought the need to consider the full bogie, but the instability is again 

determined by the D-decomposition method and the essential link to the critical 
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velocity of the moving force is again neglected. Therefore, the results presented in 

this paper are novel and shed new light on the problem. 
 

In this paper, layered models of railway track are under consideration. First, the 

problem is specified alongside with simplifying assumptions for the analysis. The new 

approach introduced in previous author’s works [15-17,19,20] is used to narrow the 

range of parameters yielding to unstable cases of proximate masses in the subcritical 

range of velocities. Then such cases are extended by adding the missing part of the 

two-axle bogie, the results are compared, and conclusions are drawn. All results are 

presented in dimensionless parameters to cover a wide range of possible scenarios. 
 

2  Problem formulation 
 

One version of the problem deal in this contribution is depicted in Figure 1. In more 

detail, in this figure the three-layer model is traversed by two moving proximate 

masses. Reductions to one or two-layer models are obvious and can be consulted in 

[15-17]. Extension to two-axle bogie is exemplified in Figure 2. 

 

 
Figure 1: Three-layer model of the railway track traversed by two moving proximate 

masses, adapted from [19]. 

 

 
Figure 2: One-layer model of the railway track traversed by a two-axle bogie. 
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Assumption for the analysis of induced vibrations as well as the governing 

equations can be consulted in [15-17]. Exception is the bogie introduction, which 

needs the adaptation of the right-hand side and additional equations. Thus, for the sake 

of completeness the right-hand side of the beam equilibrium in the case of two moving 

masses is: 

 ( ) ( ) ( ) ( )01, 1 02, 2

1 1

2 2
b tt b ttP M M w t x x P M M w t x x 

      
− + − + − + −      
      

 (1) 

This equation for the case with bogie, it changes to: 

 

( ) ( )

( ) ( )

01, 01 01, , , 1

02, 01 01, , , 2

2 2

2 2

tt v v v t v t t

tt v v v t v t t

d d
P Mw t k w u c w u x x

d d
P Mw t k w u c w u x x

  

  

    
− − − + − − + −    

    

    
+ − − − − − − − −    

    

 (2) 

and the additional equations are: 

 ( ) ( ) ( ), 01 02 01, 02, ,2 2 0b v tt v v n t t v tM u t k w w u c w w u− + − − + − =  (3) 

 ( ) ( ), 01 02 01, 02, , 0
2 2

b tt v v t t t

d d
J k w w d c w w d  + − + + − + =  (4) 

where x1 and x2 mark the fixed coordinate of the rear and front wheel mass, 

respectively. Derivatives are designated by the variable in subscript position preceded 

by a comma and the meaning of other symbols is exemplified in Figures 1 and 2. 
 

The solution method follows these steps: at first, equations are transformed from 

fixed coordinates to the moving ones. Then, dimensionless parameters are introduced. 

For them, a Winkler beam characterized by EI, m, kf and moving force P is selected 

as a reference beam. Before the switch to dimensionless counterparts, all parameters 

are assumed in their distributed version. The range of possible values, based on 

formulas presented in [18] can be consulted in [20]. 
 

3  Results 
 

It has already been proven that the problem of instability of single moving mass and 

two moving proximate masses is substantially different, [15-17]. The main difference 

lies in respecting or not respecting the critical velocity of the moving force. In one-, 

two- and three-layer models, there are one, two, and three critical velocities in regular 

cases. In irregular cases, the missing velocities are replaced by so-called pseudo-

critical velocities. In the regular cases of one moving mass, all such delimited regions 

are respected, and the instability lines are contained in these regions. In irregular cases, 

some internal critical velocities may be crossed by instability lines, but this never 

happens for the lowest one. When two proximate masses are moving, critical 

velocities are not respected. Therefore, instability can occur in the subcritical velocity 

range. However, not all such cases are considered viable, as the crossing can occur at 

a very high moving mass ratio and is therefore not physically possible. 
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After omitting the contribution of shear and damping, the one-layer model has no 

variable parameters except the velocity and moving mass ratios. Figure 3 shows that 

for certain dimensionless distances between the masses, an unstable behaviour is 

detected in the subcritical velocity region. Instability lines are plotted as a function of 

velocity ratio, and their ordinates indicate the moving mass ratio for which there is a 

switch between stable and unstable behaviour. The velocity ratio is defined with 

respect to the reference beam as: 

 
ref

v

v
 = , with 4

2

4 1f f

ref

k EI k
v

m m
= =  and 4

4

fk

EI
 =  (5) 

and the moving mass and damping ratios, and dimensionless distance between masses 

as: 

 M

M

m


 = , 

c

2

f

f

fmk
 = , d d=%  (6) 

For comparison with the case of moving bogie, the mass M must be increased by Mb/2. 

Considering Eq. (5), the critical velocity ratio of one-layer model with no shear 

contribution is equal to unity. 

 

 

 
Figure 3: One-layer model: aggravation due to the increased damping a) 0.05f = ; 

b) 0.3f =  (1m – single moving mass, d_x – two moving masses at dimensionless 

distance x). 

 

 

In the two-layer model there are more parameters that can be varied, namely there 

are additional mass, stiffness and damping ratios related to the railpads and sleepers, 

and are defined as: 

 
p

p

f

k

k
 = , s

s

m

m
 = , 

c

2

p

p

fmk
 =  (7) 

)b



MM



)a



 

6 

 

Extensive parametric analysis concluded that instability could occur in the 

subcritical range of velocities for realistic moving mass ratios only when the 

dimensionless distances are within 1.25;1.75d% . For this analysis, s  was tested 

with steps of 0.1 and d% with steps of 0.25. Additionally, such a situation also depends 

on p , for which the initial (lowest) value can be determined, and then all higher 

values are also critical. The starting values ranged from 10 to 66. Some cases are 

shown in Figure 4. For this analysis 1s =  and thus the critical velocity ratio does not 

depend on p  and equals 1/ 2 . p  was chosen as 300 and 0.05p = . 

 

 
Figure 4: Two-layer model: aggravation due to the increased damping a) 0.05f = ; 

b) 0.3f =  (1m – single moving mass, d_x – two moving masses at dimensionless 

distance x). 

 

In the three-layer model, there are again more parameters that can be varied 

because the ballast layer is included, and therefore there are additional mass, stiffness 

and damping ratios, defined as: 
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By extensive parametric analysis, it is also possible to find scenarios for which 

instability occurs in the subcritical velocity range for realistic moving mass ratios. 

This analysis cannot be performed in a rigorous way because the critical velocity is 

not well-defined in all cases, and when it occurs, it must be replaced by a 

pseudocritical value, which does not correspond to the true resonance and may be 

ambiguous, [17, 20]. In Figure 5 two cases are shown. It is seen that the region of 5 

resonances is difficult to predict. When there are 5 resonances, then the 3 critical 

velocities are well-defined, however in all the other cases the lowest critical velocity 

can only be determined by parametric analysis. Moreover, when the case is closer to 

the region with 5 resonances, then the pseudocritical value it is dominant, while in the 
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middle region it is ambiguous. Nevertheless, given a proper estimate of the lowest 

critical velocity, a parametric analysis can be performed and cases with realistic 

moving mass ratios indicating unstable behaviour in the subcritical velocity range can 

be identified. One of them in shown in Figure 6.  

 

 
Figure 5: Number of resonances for 1s = , the indicated range of 

b  and p : a) 

2b = ; b) 4b =  (1-red,3-yellow,5-green). 

 

 

 
Figure 6: Three-layer model: aggravation due to the increased damping for 1s = , 

2b = , 30p = , 0.113b =  and 1.75d =%  (CV1 – the lowest critical velocity, dr_x – 

xp b f  = = = ). 

 

In Figure 6, instability lines are only plotted in the subcritical range. In this case, 

values for 30p =  and 0.113b =  are chosen from the logarithmic scale of the figure 
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as 0.05 600.03 10p
=   and 0.05 90.04 10p

=  , which yields a well-defined value for the 

critical velocity. 
 

4  Conclusions and Contributions 
 

In this paper, it was shown that the instability of moving inertial objects can change 

the perception of the critical velocity, which for practical applications is understood 

as the speed that moving trains cannot exceed to keep their passengers in safe 

conditions. Since this speed is commonly understood as the lowest velocity of wave 

propagation in a structure that corresponds to the critical velocity of a single moving 

constant force, this paper clearly shows that this perception must be corrected. 
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