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Abstract

This paper focuses on virtually coupled train sets, a novel approach to enhancing rail-
way network capacity and efficiency by allowing trains to drive coordinately closer
than the absolute brake distance from each other. A simulation tool is developed to
analyze the driving behavior of coupled trains, including the coupling and decoupling
maneuvers, enabling a detailed study of coupling dynamics. Our investigation extends
to the energy consumption relationship between leading and following trains under the
influence of stochastic variables such as wind and rolling resistance, alongside an eval-
uation of the gap control parameters’ sensitivity. The findings indicate that while wind
gusts moderately increase energy consumption, rolling resistance variability has a neg-
ligible effect. Employing sliding mode control with adaptive time headway seems a
suitable control choice, highlighting a trade-off between control precision and energy
efficiency.
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1 Introduction

The demand for public transport has escalated rapidly over the years. Building new
infrastructure to accommodate more services poses financial and environmental chal-
lenges. Therefore, the railway industry is looking for solutions to sustainably expand
the capacity of existing railway networks. The adoption of moving block signalling
(MBS) system in European Train Control System (ETCS) Level 3 is a step in this di-
rection. However, MBS relies on very conservative assumptions for spacing trains. It
uses absolute braking distance (ABD) for spacing trains. Therefore, there is room for
further optimization by reducing safe distance maintained by trains. This paves way
for the concept of virtually coupled train sets (VCTS).

VCTS aims to change the safe distance paradigm from ABD to relative braking dis-
tance (RBD) [1] and thereby increase track capacity. In VCTS two or more trains are
electronically connected to each other to form a platoon [2]. Train-to-train communi-
cation, relative positioning and advanced train control techniques are used to provide
each train awareness of its own characteristics and environment which enable trains to
calculate and manage a safe distance from each other and coordinate their movements
to form a platoon.

Since trains are virtually connected without using traditional mechanical links, sev-
eral possibilities for new rail operations open up. For example, trains sharing a route
can couple to form platoons, freeing up track space to accommodate more trains.
In [3] a study comparing VCTS and MBS showed significant capacity improvements,
with VCTS reducing safe distances by 43% compared to MBS. Additionally, VCTS
enables trains to couple while moving, saving time and labor compared to mechanical
coupling and improving schedule robustness due to enhanced flexibility.

VCTS operations also have energy implications. Energy consumption and its opti-
mization is a crucial aspect that needs to be considered for sustainable railway opera-
tions. Several studies have been done on speed profiling for the energy consumption
of trains. [4] provides an overview of train speed profiling solutions for optimizing en-
ergy consumption. The authors indicate that the energy efficiency of running a single
train can only be improved in terms of coasting, as previously studied in [5]. On the
other hand, the authors of [6] point to traffic fluidity as one criterion that is relevant for
the evaluation of the quality of rail transport services and directly translates into the
energy efficiency of train running. In [7] the energy implications of interference with
leader train on follower trains when driving under MBS and VCTS with a minimum
gap of 2 km were analyzed.

The investigation in this paper extends to the energy consumption relationship be-
tween leading and following trains in a VCTS when the leading train is following an
energy-optimized trajectory. The influence of stochastic variables such as wind and
rolling resistance is analyzed, alongside an evaluation of the gap control parameters’
sensitivity.
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2 Methods

For this research, a train simulation tool using the programming language Python was
developed. This tool was designed primarily to study virtual coupling and analyze the
performance of the coupling stability and energy consumption.

Trains in the simulation can be either driving independently and following a pre-
calculated target trajectory (Section 2.1) using a trajectory following control (Section
2.2), or as part of a platoon, in which case the train will try to maintain a targeted
gap distance using a gap control (Section 2.4). The coupling procedure is described in
Section 2.3. With the target force from the controllers, a dynamic model calculates the
resistance force using the Davis Equations, while allowing for some variables to be
stochastic (Section 2.5). With the resultant force, the simulator uses an Euler method
to integrate the speed numerically and the trapezoidal rule for updating the position.

2.1 Optimal Trajectory Generation

The optimal trajectory is calculated using the method developed in [8] for electric
trains and later further modified to allow the optimization of the trajectories of hybrid
trains [9].

The trajectory optimization takes into consideration the gradient of the tracks, as
well as the increase of rolling resistance due to curves. The timetables and maximal
speeds serve as boundary conditions. The train resistance is modelled using the Davis
equation, and the efficiency curves of internal components such as motors, inverters,
and transformers are taken into consideration as well.

2.2 Trajectory Following Control

The optimized trajectory is calculated beforehand and loaded in each train. When
trains are driving independently or as leaders in the platoon, a multivariable feedback
control (MFC) is used to follow the trajectory using the following equation:

u(t) = k1 ·(aopt(t)−aactual(t))+k2 ·(vopt(t)−vactual(t))+k3 ·(sopt(t)−sactual(t)) (1)

Where the variables a, v and s are the acceleration, velocity and position. The u(t)
is the control effort, which influences the forces at the wheel Fwheel by Equation (13)
below. The control parameters k1..3 are optimized by minimizing the loss function
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which, besides the total energy consumption, includes other penalty terms:

J(sactual, vactual, Fwheel, k1..3) =∫ T

t0

Fwheel(t) · vactual(t) + c1 ·max(0, vactual(t)− vlimit(t)) + c2 · Pstop(t) dt

+ c3 ·max(0, sactual(T )− sopt(T )) + c4 · |k|

Pstop(t) =

{
1, if vactual(t) > 0 and vopt(t) = 0

0, else
(2)

where |k| denotes the L2-norm of the control parameters, and the coefficients c1..4
represent the weight of the penalty for respectively exceeding the speed limit, not
stopping at the station at the proper time, not finalizing the service at the proper time,
and the regularization of the control weights.

2.3 Coupling Procedures and Gap Policy

VCTS has four operational modes: normal driving, coupling, coupled driving, and
decoupling. Inside the platoon, trains can play two roles different roles: the trajectory
supervisor, which follows the optimal trajectory and sets the pace for the other trains,
and the gap supervisor, which adjusts its dynamics to track the gap and velocity of the
trajectory supervisor. Each platoon requires one trajectory supervisor. In the simula-
tion all trains have gap controllers and trajectory following controllers and therefore,
can take both roles as trajectory supervisor and as gap supervisor.

1. Normal driving mode: In the normal driving mode the trains assume a trajec-
tory supervisor role. This means they will use the trajectory controller to follow
the optimal trajectory provided.

2. Coupling mode: In the coupling mode, communication between trains is initi-
ated to reduce the gap between them and the trains change roles. The follower
remains the trajectory supervisor and the leader takes the role of the gap super-
visor. The leader will reduce its speed to converge the gap and then synchronize
the speed with the follower.

3. Coupled driving mode: Once the coupling manoeuvre is over, the roles are
swapped. The leader becomes the trajectory supervisor, and the follower be-
comes the gap supervisor. Then the follower tracks the leaders speed and main-
tains a safe gap.

4. Decoupling mode: For the decoupling maneuver the gap between the trains
need to be increased, so that they can go back to operating independently. When
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the decoupling mode starts, the roles do not change but the gap supervisor re-
ceives a new target gap which is relatively large. So the follower slows down
until the new target gap is achieved while the leader continues following the
optimal trajectory. Once the target gap is achieved the trains terminate the com-
munication with each other and continue driving in normal driving mode.

Figure1 shows an example of two trains transitioning through the various opera-
tional modes of VCTS. For the coupling and decoupling procedure, it is important to
be sure that no train will violate any speed limit to approach or depart from the pla-
toon. Therefore, if trains are already driving at or close to the speed limit, the train in
front should reduce its speed to allow for the next train to catch up, and the inverse
should happen during decoupling. During the coupling maneuver, since trains are
moving towards each other it is also important to limit the maximal allowed relative
speed, to minimize potential hazards.

The chosen gap policy is the Constant time headway policy (CTH), in which the
distance maintained between the vehicles is proportional to the speed. CTH policy
mimics human driving behavior and is the most researched distance policy because
string stability can be achieved with simple V2V communication topologies [10].

Figure 1: Speed profile or trains during the coupling and decoupling procedures. The
approach during coupling is slower due to restriction on the maximal relative
speed for a given distance
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2.4 Gap Control

For the gap control, when trains are following a leader inside a platoon, a sliding
mode controller (SMC) is used. The train responsible for controlling the distance
to the leader train receives the states of the leader train and has access to its own
state, which are then used to calculate the control effort required u(t). The SMC gap
controller is designed by defining a sliding surface that represents the desired system
dynamics. This sliding surface incorporates the errors in position es and velocity ev
of the follower train relative to the leader train. The communication between trains
and sensor accuracy is so far assumed ideal: i.e. no communication loss, delays, or
inaccuracies.

The control law used in the sliding mode follows:

u(t) =
K · (σ(t))
|(σ(t))|+ ρ

(3)

where K is the controller gain and ρ is the boundary parameter. This control law
drives the system in the opposite direction of the error, aiming to eliminate it by bring-
ing the state closer to the surface σ. The boundary layer method is applied to the
control signal u to mitigate chattering phenomena, which helps stabilize the control
action. Different sliding surfaces are used for the coupled driving mode and the ap-
proach maneuver (coupling mode). The latter is separated into two phases, with a
third sliding surface with limits the maximal relative speed.

The sliding surface σ(t) employed for the coupled driving mode is defined as:

σ(t) = es(t) + λ · ev(t)
= sleader(t)− sfollower(t)− ttarget · vfollower(t) + λ · (vleader(t)− vfollower(t))

(4)

where es(t) and ev(t) are the error in position and velocity w.r.t the leader train, λ is a
gain factor, and ttarget is the desired gap expressed in time.

For the coupling mode, the SMC uses an Adaptive Time Headway (ATH) method,
similar to the method proposed by [11], to smoothly decrease the gap to the desired
gap. It aims to prevent excessive overshoot resulting from uncontrolled correction
effort and to achieve asymptotic convergence of the gap while limiting the relative
speed.

This method divides the approach maneuver into two phases. During phase 1, the
sliding surface σ1 is expressed as:

σ1(t) = es(t)− (tcarrot(t) · vactual(t)) (5)

To guarantee a smooth transition from the ABD to RBD, the sliding surface is ma-
nipulated using an additional carrot headway tcarrot > ttarget. The tcarrot is initialized
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at t0 (when the coupling procedure starts) as the difference between the current head-
way and the target one so that the gap control is initialized inside the sliding surface
with zero error. Then the carrot headway is asymptotically reduced to zero to achieve
the target gap smoothly. The rate at which the carrot headway is reduced in phase 1 is
as follows:

tcarrot(t0) =
es(t0)

vactual(t0)

tcarrot(t+∆t) = tcarrot(t)−
k · tcritical ·∆t

vactual(t)

(6)

The rate at which tcarrot is reduced is determined by the parameter k and tcritical.
The parameter tcritical influences when the control will move from phase 1 to phase
2. Furthermore, the rate at which the tcarrot is reduced is also inversely proportional
to the actual speed of the train. This means with the increasing speed of the train, the
rate at which the gap is converged is slowed down.

Once the follower train reaches the specified headway sleader(t)−sfollower(t)

vfollower(t)
= tcritical,

phase 2 begins. In this phase, a different sliding surface is utilized to facilitate smooth
asymptotic convergence to the final desired gap. In phase 2, the sliding surface σ2 is:

σ2 = es(t)− tcarrot(t) · vactual(t) + (tcritical − tcarrot(t)) · ev(t) (7)

The difference between the sliding surface σ1 and σ2 is that σ2 also takes into
account the the relative speed ev. This enables more precise control and asymptotic
gap convergence. The rate at which the carrot headway is reduced in phase 2 is:

tcarrot(t+∆t) = tcarrot(t)− tcarrot(t) ·
K ·∆t

vactual(t)
(8)

Furthermore, in order to limit the relative velocity between the trains, a third sliding
surface σ3 is enabled at any point during the approach if the relative velocity exceeds
a specified limit vrel,max:

σ3(t) = vleader(t)− vfollower(t)− vrel,max(t)

if |vleader(t)− vfollower(t)| > vrel,max

(9)

which effectively limits the relative speed to vrel,max.

2.5 Stochastic Variables and Dynamic Model

To accurately model the stochastic influences of environmental and mechanical fac-
tors, such as wind resistance and rolling resistance variations, our approach incorpo-
rates Gaussian noise processed through a low-pass filter. This methodology is detailed
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below, where ∆t denotes the simulation time step and L represents the characteristic
length:

1. Gaussian Noise Generation: At each time t, a random variable n, is sampled
from a Gaussian distribution:

n ∼ N

(
µ,

√
L

∆t
σ

)
(10)

where σ is the variance, adjusted by the factor
√

L
∆t

to normalize the noise
magnitude relative to the time step and characteristic length.

2. Low-Pass Filtering: To simulate temporal correlation and smooth transitions,
a first-order low-pass filter is applied:

f(t) = α · n+ (1− α) · f(t−∆t) (11)

with f(t) representing the filtered noise at time t. This filter introduces the
necessary temporal coherence and smoothness to the noise sequence. Where
α = ∆t

∆t+L
is defined as the smoothing factor, which controls the degree of

correlation between successive noise values.

The characteristic length L encapsulates relevant physical or temporal scales. The
normalization of the noise magnitude and α ensures consistent model behavior across
varying time steps, crucial for the model’s accuracy and scalability. For modeling
the wind, the noise signal fwind(t) represents the wind speed. The mean value of the
noise µwind is the average headwind expected by the train, the variance σwind is the
wind gust intensity, and the characteristic length Lwind is the gust temporal duration.
As seen in the Figure 2.

As for the rolling resistance, the noise signal froll(t) is a factor by which the resis-
tance will be multiplied (see Equation (13)), which depends on its mean value µroll

and variance σroll and the characteristic length Lroll, which is the spatial scale over
which track conditions vary.

The resultant force is calculated as follows:

Fresultant(t) =Fwheel(t)− Fresistance(t)

=Fwheel(t)− (A+B · vactual(t)) · (1 + froll(t))−
C · (vactual(t) + fwind(t))

2

(12)

Where fwind(t) and froll(t) are the filtered noise given by Equations (10) and (11),
and the terms A, B and C are the Davis coefficient [12]. The force at the wheels is a
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Figure 2: Example noise generation for the wind parameters with a mean (headway)
of 0/s and wind gust speed (variance) and duration (characteristic length) of
15m/s and 50 seconds, for different simulation step sizes

function of the control effort u(t) with a first-order delay, give by Equation (13):

Fwheel(t) = Fwheel(t−∆t) +
min

(
u(t) · Fmax,

Pmax

vactual(t)

)
− Fwheel(t−∆t)

τ
· (∆t)

(13)

3 Results

For the analysis the track Hagen-Warburg was chosen. The service Hagen-Warburg-
Hagen comprises 34 stations and takes 5 hours to complete (Figure 3). The optimal
trajectory is calculated previously using the tool from [8]. The parameters of the
trajectory and gap controller were optimized using a genetic algorithm to minimize
the cost from Equation (2).

Initially, a mesh independence study was conducted (Figure 4) to assess the optimal
step size. For the following analysis, a step size of 0.01 s is used.

3.1 Stochastic Variables Study

Initially, the sensitivity of total energy consumption is analyzed against the amplitude
of the wind resistance and uncertainty of the rolling resistance. Each experiment with
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Figure 3: Overview of the service and its optimal trajectory used for the simulation

Figure 4: Mesh Independence Study

stochastic variables was repeated 10 times to calculate the mean values and standard
deviations.

In Table 1, the standard deviation of the wind noise is set to zero and different mean
values are simulated, which is equivalent to a constant headwind.

Wind Speed Leader Energy Follower Energy
(km/h) (MWh) (MWh)
0.0 776.71 (baseline) 806.36 (baseline)
7.2 793.29 (+2.13%) 822.66 (+2.02%)
14.4 811.24 (+4.45%) 845.94 (+4.91%)
21.6 830.49 (+6.92%) 862.27 (+6.93%)
28.8 851.12 (+9.58%) 882.89 (+9.49%)

Table 1: Headwind Impact on Energy

As expected, the headwind has a quadratic effect on the resistance and is non-
negligible for wind already at moderate speeds. However, it is unlikely for the wind
to stay constant during the entire trip. Therefore, in Table 2, the average is set to
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zero, while different standard deviations of the noise are experimented with, which
represent the wind gust intensity.

Wind Gust Speed Leader Energy Follower Energy
(km/h) (MWh) ± Std (MWh) ± Std
14.4 777.52 ± 5.08 (+0.10%) 808.01 ± 5.59 (+0.20%)
28.8 781.93 ± 7.56 (+0.67%) 813.70 ± 9.34 (+0.91%)
43.2 789.34 ± 11.21 (+1.63%) 823.30 ± 11.73 (+2.10%)

Table 2: Wind Gust Impact on Energy

The energy is less impacted by gusts. With a zero mean, it is as likely to encounter
gusts in favour and against the driving direction, however, due to the quadratic nature
of the resistance force, there is a slight increase in energy consumption at high wind
gust speeds. The effect is slightly more pronounced for the follower train, which
may be a result of the effort of the gap control tightly regulating the inter-vehicular
distance.

As for the rolling resistance, the mean of the noise has a linear impact on the energy
consumption, as shown in Table 3. By which is it possible to infer that the rolling
resistance corresponds roughly to 20% of the energy expenditure for this service.

Increase in Rolling Leader Energy Follower Energy
Resistance (%) (MWh) (MWh)
1.0% 778.09 (+0.18%) 807.71 (+0.17%)
2.0% 779.47 (+0.36%) 809.07 (+0.34%)
5.0% 783.62 (+0.89%) 813.16 (+0.84%)
10.0% 790.58 (+1.79%) 829.06 (+2.82%)

Table 3: Rolling Resistance Uncertainty Impact on Energy

Next, the mean of the rolling resistance noise is set to zero and different standard
deviations are simulated (Table 4). By the linear nature of the rolling resistance, it can
be seen that there is no impact on the leader train. Surprisingly, the energy consump-
tion of the second train also is not impacted, which leads to the conclusion that the gap
control does a better job dealing with the rolling resistance noise than the variations
in the wind. One reason for this could be the shorter characteristic length chosen for
the resistance noise (200 meters), compared to the wind (100 seconds), which might
not be enough to disturb the follower train long enough to require corrective measures
from the gap control.
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Rolling Resistance Leader Energy Follower Energy
Standard Deviation (%) (MWh) ± Std (MWh) ± Std
1.0 776.76 ± 0.20 (+0.01%) 806.95 ± 1.73 (+0.07%)
2.0 776.57 ± 0.56 (-0.02%) 807.32 ± 2.61 (+0.12%)
5.0 776.34 ± 0.97 (-0.05%) 806.80 ± 1.76 (+0.05%)
10.0 777.09 ± 1.70 (+0.05%) 808.54 ± 2.50 (+0.27%)

Table 4: Rolling Resistance Noise Impact on Energy

3.2 Gap Control Parameters Study

To analyze the impact of the control parameters on the energy consumption, the base-
line scenario was simulated with different boundary parameters ρ and control gains K
for the sliding mode control of the gap (Figure 5).

Figure 5: Surface plot of the energy consumption of the follower train for different
values of ρ and K parameters of the gap control

The ρ parameter, although important for avoiding chattering, poses little influence
on the overall energy consumption, while the control gain K, slightly increases the en-
ergy consumption by trying to stay more aggressively on the desired gap. The increase
in energy consumption due to a more aggressive control effort likely overshadows the
gains of driving close to the optimal trajectory.
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4 Conclusions

In conclusion, this study presents an evaluation of the performance of VCTS. Through
simulation studies, an analysis of stochastic variables such as wind resistance and
rolling resistance reveals that while wind gusts have a moderate impact on energy
consumption, the variability in rolling resistance does not significantly affect the en-
ergy efficiency of the VCTS system.

Furthermore, the gap control strategy employed in VCTS, particularly the use of
SMC with ATH, seems fit to maintain optimal distances between trains even in the
presence of noise in the resistance force, ensuring safety and efficiency. The control
parameters study underscores the importance of carefully selecting the sliding surface
parameters to balance energy consumption and control responsiveness. The results
suggest that minimizing deviations from the sliding surface through tighter control
may lead to increased energy use, indicating a trade-off between control precision and
energy efficiency.

Overall, the adoption of VCTS represents a forward-thinking approach to address
the increasing demand for rail transport, offering a scalable solution that enhances
capacity and efficiency without the need for extensive infrastructure investments.
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