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Abstract 
 

In this paper, a model-based solution for the identification of the railway track 

irregularity from simulation data is presented. The proposed methodology relies on 

the application of the Unknown Input Observer algorithm. A Simpack railway vehicle 

model is adopted to simulate the acceleration levels that vehicle-mounted sensors (for 

instance on the bogies and carbody) would measure during operation. A vehicle 

running at constant speed on a straight track is considered, considering different type 

of track irregularity (longitudinal level, cross-level) to test the algorithm capability to 

identify the input irregularity. In the analysed cases, satisfactory results are achieved 

both in terms of signal histories and corresponding frequency content, proving the 

methodology suitable for the identification of the track irregularity for monitoring 

purposes, adopting an instrumented vehicle. 
 

Keywords: railway infrastructure, track condition, model-based solution, rail vehicle 

dynamic simulation, condition-based maintenance, predictive maintenance.  
 

1  Introduction 
 

To ensure the safety of the railway network, track geometry is periodically inspected 

[1]-[3] by Track Recording Vehicles (TRVs), which are special purpose vehicles 

typically equipped with inertial and optical sensors. Given their high operating costs, 

new strategies have been proposed in the latest years to support the condition 

monitoring of railway infrastructure, relying on instrumented in-service vehicles. On 
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one hand, data driven methodologies can be adopted. For instance, in [4]-[7], the 

evolution of the longitudinal level over time was monitored adopting indicators 

(computed from the bogie accelerations) representative of the track condition. Other 

examples can be found in [8]-[10], where spectral analysis, band-pass filters, wavelet 

transform are used to identify different track defects. 

On the other hand, model-based strategies can be followed. Given a rail vehicle model 

whose complexity depends on the target of the study, these methodologies typically 

aim at solving an inverse problem: the input track irregularity is estimated based on 

the data collected on the vehicle. Popular examples can be made referring to Kalman 

Filters [9],[11]-[12]. Although generally accurate, this method requires a wide set of 

sensors and a statistical evaluation of the system variance. Therefore, other model-

based techniques have been proposed, that still aims at identifying the track 

irregularity profile, supporting maintenance strategies. 

In this paper, reference is made to the Unknown Input Observer (UIO) [13] as a 

methodology to identify the railway track irregularity profile. The algorithm allows 

evaluating the unknown input disturbance estimating the state of a linear system. In 

this work, the Manchester Benchmark model will be used to simulate the operation of 

an instrumented in-service vehicle. The obtained acceleration data will be fed to the 

UIO algorithm willing to identify the input track irregularity.  
 

2  Methods 
 

In this section, at first the principles of the Unknown Input Observer (UIO) will be 

presented; secondly, the application to the estimation of the track irregularity will be 

addressed. 
 

2.1  Unknown Input Observer (UIO) 
 

The UIO is a model-based algorithm which can be used to reconstruct a non-

deterministic input through the adoption of a linearized model of the system, when 

measurements are available. Consider a mechanical system described in the typical 

state-space form expressed in Equation (1), where x(t) represents the state of the 

system, u(t) the vector of the known inputs and d(t) the unknown disturbances acting 

on the system (with no direct influence the output dynamics): 

{
�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐸 𝑑(𝑡)

𝑦(𝑡) = 𝐶 𝑥(𝑡)
 (1) 

where A, B, C, E are real constant matrices of suitable dimensions. To simplify the 

notation, the time dependency will be hereafter omitted.  

An estimation of the disturbance �̂� can be obtained by manipulating Equation (1), 

leading to: 

�̂� = (𝐶𝐸)+ (�̇� − 𝐶𝐴 𝑥 − 𝐶𝐵 𝑢)  =  𝑀( �̇� − 𝐶𝐴 𝑥 − 𝐶𝐵 𝑢) (2) 

Note that the pseudo-inverse operator (⬚)+ is adopted, being CE a rectangular matrix 

(generally, a smaller number of inputs is considered with respect to the available 

measurements).  
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A necessary condition for the applicability of the UIO is associated to the rank of 

matrix CE that must be equal to the rank of matrix E, which in turn must be equal to 

the number of unknow inputs nd acting on the system (3). 

𝑟𝑎𝑛𝑘(𝐶𝐸) = 𝑟𝑎𝑛𝑘(𝐸) = 𝑛𝑑 (3) 

It is evident that Equation (2) requires the knowledge of the system state x. Therefore, 

the disturbance estimation is combined with a Luenberger observer, so as to generate 

a state estimation, as reported in Equation (4): 

{
�̇̂� = 𝐴 �̂� + 𝐵 𝑢 + 𝐸 �̂� + 𝐿(𝑦 − 𝐶 �̂�)

�̂� = (𝐶𝐸)+ (�̇� − 𝐶𝐴 �̇̂� − 𝐶𝐵 𝑢)  =  𝑀(�̇� − 𝐶𝐴 �̇̂� − 𝐶𝐵 𝑢)
 (4) 

For the sake of clarity, the algorithm can be visually represented as shown in Figure 

1 (where u is set to zero in view of the application presented in Section 2.1). 

 
Figure 1: UIO block diagram. 

Note that the observer of Equation (3) requires the knowledge of �̇�. Defining the 

matrix T as:  

𝑇 = 𝐼 − 𝐸𝑀𝐶 (5) 

it turns out that the observer dynamics is governed by the following equation: 

�̇̂� = (𝑇𝐴 − 𝐿𝐶) �̂� + 𝑇𝐵 𝑢 + 𝐸𝑀 �̇� + 𝐿 𝑦 (6) 

A second condition for the existence of the UIO is therefore that the couple of matrices 

𝑇𝐴 and 𝐶 is detectable. The gain matrix L can be defined according to different 

approaches, as the pole placement or an optimal one. 
 

2.2  Application of the UIO for track irregularity estimation 
 

In this work, an application of the UIO algorithm is proposed, aiming at the estimation 

of the vertical railway track irregularity. To this aim, a simplified model of a rail 

vehicle (making reference to the Manchester Benchmark parameters [14]) in the 
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vertical plane is adopted. The scheme of the model is reported in Figure 2. The model 

includes the bounce and pitch motions of the carbody, the front and the rear bogies, 

which lead to 6 free degrees of freedom (dofs), highlighted with red arrows in Figure 

2. Primary and secondary suspensions are modelled as linear springs and dampers in 

parallel, acting both along the vertical direction and the longitudinal one (not reported 

in Figure 2 for simplicity).  

 

 
 

Figure 2: Railway vehicle model. 

The track irregularity is introduced as imposed displacement to the 4 wheelsets. 

Actually, the multi-input system can be addressed given the pivot pitch, the wheelbase 

and the vehicle speed. This way, taking as reference the leading wheelset, the three 

remaining inputs can be defined by suitable delay functions. 

Once the vehicle model has been presented, attention is paid to the definition of the 

state of the system. 20 variables define the extended state, as hereafter described: 

- 12 states associated to the independent coordinates and their time derivatives; 

- 4 states accounting for the disturbances, under the assumption that the inputs to 

the system are the displacements of the wheelsets and their time derivatives. Since 

in the formulation described in Section 2.1 the inputs are inserted in the equations 

without any time derivative, the state is augmented introducing also the inputs, 

thus their time derivatives will be the results of the estimation performed by UIO; 

- 4 states related to the Padè approximation introduced to account for the time delay 

between the inputs. The approximation relies on the Taylor expansion of the time 

delay expressed through an exponential function. A 2nd order Padè approximation 

is considered in this work for each trailing wheelset in the bogies. 

Considering this model, in order to satisfy the necessary condition for the 

observability of the disturbances expressed in Section 2.1, a minimum number of four 

measurements should be available. In particular, these measurements must be 

associated with the motion of the bogies. In order to improve the accuracy of the 
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estimation, also measurements on the carbody are considered. As final configuration, 

it is assumed to measure two vertical accelerations on the carbody and on each bogie 

so to have a total number of six sensors. 
 

3  Results 
 

The Manchester Benchmark model was run in Simpack to generate the measurements 

required by the UIO. Different sensors positions were selected, willing to investigate 

the minimum set of data required to successfully estimate the track irregularity. 

Moreover, several operating scenarios were considered, including the effect of speed 

variability (100-160 km/h), track characteristics (straight-curves) track irregularity 

amplitude (low-high) and type of defectiveness (alignment, longitudinal level, cross-

level).  

For the sake brevity, in this work an exemplary result is presented, making reference 

to a simulation considering a straight track where the vehicle is running at 160 km/h. 

Regarding the irregularities, the presented simulation takes into account vertical, 

horizontal, and cross-level irregularities defined by a standard power spectral density 

(ERRI B176). 

Figure 3 shows the comparison between the track irregularity considered as a 

reference input and the one estimated by the UIO, respectively reported as a blue and 

red line.  

 

Figure 3: Comparison between the longitudinal level irregularity considered as 

reference (to run the vehicle dynamic simulation in Simpack) and estimated by the 

UIO algorithm. Signal histories for a) front bogie and b) rear bogie. Simulation 

along straight track at 160 km/h. 
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Specifically, Figure 3a) shows the results for the front bogie, while in Figure 3b) the 

rear bogie is proposed. The first 50 m of the straight track was designed as an ideal 

one to allow initialising the simulation. From 50 m on, the vehicle runs over the track 

irregularity. Comparing the reference and estimated track profiles, a satisfactory 

agreement can be recognised for both bogies, the two lines being almost 

superimposed. However, an overestimation can be observed in most of the irregularity 

peaks. To deepen the results, the Power Spectral Density Functions (PSDs) of the 

signal were analysed, as reported in Figure 4. It can be recognised that while the low 

frequency content is well identified, an overestimation characterizes the 5-8 Hz range, 

which justifies the signal histories of Figure 3. This fact may be related to the weights 

considered in the design of the UIO algorithm, but can be still considered as promising 

as they prove the model capability to identify the track irregularity. 

 

Figure 4: Comparison between the longitudinal level irregularity considered as 

reference (to run the vehicle dynamic simulation in Simpack) and estimated by the 

UIO algorithm. PSD for a) front bogie and b) rear bogie. Simulation along straight 

track at 160 km/h. 

 

Finally, to further validate the results presented in Figure 3 and Figure 4, two indices, 

denoted respectively with α and β, are proposed to assess the overall consistency, both 

in time and frequency domains. For the time domain, the normalized squared error 

defined in Equation 7 is employed. A similar index is proposed for the frequency 

domain, with the error evaluation based on the differences in spectral intensity as 

described in Equation 8. 
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𝛼 =  
∑ (𝑥𝑖𝑟𝑟(𝑡) − 𝑥𝑒𝑠𝑡(𝑡))

2𝑇
𝑡=0

∑ 𝑥𝑖𝑟𝑟(𝑡)2𝑇
𝑡=0

 (7) 

𝛽 =  
∑ (|𝐹𝐹𝑇𝑖𝑟𝑟(𝑓)| − |𝐹𝐹𝑇𝑒𝑠𝑡(𝑓)|)2𝑓𝑁𝑌𝑄

𝑓=0

∑ |𝐹𝐹𝑇𝑖𝑟𝑟(𝑓)|2𝑓𝑁𝑌𝑄

𝑓=0

 (8) 

Table 1 shows the results of the two indices expressed in percentage. For the 

considered straight track simulation the α index is equal to about 13%, showing a good 

agreement between the estimated irregularity and the actual one. The α index takes 

into account not only the magnitude of the irregularity but also its position along the 

line, a small delay of the reconstructed signal generating a worsening of the index. 

The second index β instead focuses on the capacity of the observer to reconstruct the 

magnitude of the different wavelengths present in the irregularity. The index β is about 

1.5% showing how the observer is able to estimate, with a high degree of accuracy, 

the spectral content of the irregularity. 

 

Bogie Index α Index β 

Front 13.9% 1.5% 

Rear 12.4% 1.3% 

Table 1 – Identification indexes. 

4  Conclusions and Contributions 
 

In this paper, an application of the UIO algorithm to identify the railway track 

irregularity is proposed. To generate the data required by the algorithm, a vehicle 

dynamic simulation was performed in Simpack, considering the Manchester 

Benchmark vehicle.  

A reference simulation along a straight track at 160 km/h, with vertical, lateral and 

cross-level irregularity was considered, and the attention was devoted to the 

estimation of the vertical track irregularity. To this end, carbody and bogies 

acceleration data were used as input signals for the UIO algorithm.  

The validation of the results was performed comparing the reference and estimated 

track vertical track irregularity both in terms of signal histories and PSD. The 

comparison shows satisfactory results, although some overestimations associated to 

frequency component in the 5-8 Hz frequency range were observed. In addition, to 

further validate the results, two indices were proposed to assess the overall 

consistency of the algorithm. 
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