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Abstract 
 
The levitation control system plays a pivotal role in governing the intricate 
aerodynamic load-vehicle-rail coupling vibration process, a crucial determinant of 
vehicle stability. As speed escalates, the impact of aerodynamic load and vehicle-rail 
coupling on levitation stability becomes increasingly undeniable. Conventional 
proportional-integral-derivative (PID) controllers, while effective in simpler 
environments, exhibit diminished performance within the complexities of high-speed 
mechanical systems. To address the pressing need for accurate prediction of non-
stationary aerodynamic performance in high-speed maglev vehicles, we propose a 
load prediction model based on the Recursive Radial Basis Function Neural Network 
(RRBF). This model, leveraging recursive history information in loop neurons, offers 
dynamic memory capabilities, thus enhancing its learning of temporal patterns. The 
RRBF network predicts real-time aerodynamic load based on time series states. 
Simultaneously, we introduce a robust Nonlinear Model Predictive Controller 
(NMPC), designed to consider the physical constraints of the chopper and the 
influence of aerodynamic loads on the model's future dynamic behaviours. The 
algorithm ensures optimal roll optimization within finite time, accounting for 
constraints. Stability assessments of an electromagnet under non-stationary 
aerodynamic loads and random track irregularities are conducted through a minimum 
levitation unit dynamics-control co-simulation model. Results highlight the RRBF's 
precise identification of aerodynamic loads. Moreover, the Recursive Radial Basis 
Function Neural Network-based Model Predictive Controller (RMPC) demonstrates 
superiority over the PID method, showcasing exceptional disturbance resistance and 
making it more suitable for high-speed maglev levitation control. 
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1  Introduction 
 
As industrial technology continues to advance, high-speed maglev systems have 
garnered increasing attention as a vital component of modern transportation. The field 
of high-speed magnetic levitation encompasses various principles, including 
electrodynamic EDS, high-temperature superconducting HTS, and electromagnetic 
EMS levitation. In this paper, we specifically concentrate on the commercially 
operational electromagnetic (EMS) scheme. The levitation system employed in EMS 
high-speed magnetic levitation vehicles exhibits instability in an open loop. To 
achieve stable levitation, feedback control becomes imperative [1]. Consequently, the 
stability, safety, and comfort of the vehicle are intricately linked to the efficacy of the 
control behaviours implemented. 

In recent years, diverse control methods have been explored for achieving tracking 
control in nonlinear levitation systems. WANG [2] delved into the coupled response 
of high-speed Maglev vehicles and bridges, employing a proportional-integral-
derivative (PID) control mechanism. Yau [3], on the other hand, leveraged a back-
propagation neural network to dynamically adjust PI controller parameters in real-
time response to state changes. While these advanced control methodologies partially 
address the feedback control challenge, the escalating speed introduces heightened 
effects of aerodynamic loads and vehicle-rail coupling. Inadequate feedback control, 
particularly within the PID scheme relying on equilibrium point linearization [4], 
results in performance degradation, emphasizing the critical need for more robust 
levitation control algorithms suited for aerodynamic loads. Enter the Model Predictive 
Controller (MPC), a control scheme resilient to model nonlinearity and uncertainty 
[5]. This algorithm predicts an approximate future response based on the dynamical 
model, current inputs, and predicted disturbances. By formulating a constrained 
optimization problem in a finite time domain, MPC seeks to obtain the optimal control 
sequence considering the present state. This approach, accounting for both the present 
state and the impact of disturbances on the future state, endows MPC with feed-
forward rejection capabilities against disturbances, showcasing superior robustness 
compared to the PID scheme. 

Undoubtedly, the efficacy of the Model Predictive Controller (MPC) method 
hinges on prediction accuracy, and any model mismatch can lead to inappropriate 
control actions, resulting in a degradation of control performance [6]. In real-world 
environments, where electromagnetic force nonlinearity and disturbance uncertainty 
are inevitable, various coping strategies have been proposed to tackle the effects of 
system nonlinearity and time-varying disturbances. Shen [7] employed a Kalman filter 
to meticulously observe state changes in a vehicle under track coupling, while Sun [8] 
adeptly utilized an adaptive repetitive learning filter to learn and predict periodic 
disturbances. Sun [9] introduced an adaptive radial basis neural network for online 
prediction and feedback suppression of the time-varying mass in the maglev system. 
Model Predictive Control algorithms inherently exhibit high resistance to 
interference, and the radial basis neural network (RBF), known for its simplicity and 
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high accuracy, presents itself as an invaluable asset in high-speed magnetic levitation 
control. The fusion of MPC and RBF emerges as a judicious choice. 

In this paper, we meticulously design a Nonlinear Model Predictive Controller 
(NMPC) tailored for high-speed magnetic levitation, emphasizing heightened 
robustness. To further elevate our approach, we integrate a Recursive Radial Basis 
Function Neural Network (RRBF) for real-time prediction of aerodynamic loads. 
Using the TR08 high-speed maglev minimum levitation unit dynamics and control 
co-simulation model [10,11], we conduct a comprehensive comparison of the 
levitation control performances between PID and Recursive Radial Basis Function 
Neural Network-based Model Predictive Controller (RMPC) under various 
conditions, including aerodynamic loads, track disturbances, and random track 
irregularities, coupled with non-stationary aerodynamic loads. The study 
unequivocally demonstrates that the designed RMPC excels in disturbance 
compensation, establishing its suitability for high-speed magnetic levitation control in 
complex nonlinear environments. 

 

2  Dynamic model 
 
Through the levitation frame decoupling test [12], it can be found that the levitation 
system can be degraded to a single electromagnet control problem. The coupling 
effect between each electromagnet is partially decoupled, and the single 
electromagnet characteristic has universality and generality. Therefore, this paper is 
based on the single electromagnet structure to develop the analysis. Figure 1 shows 
the structure of the minimum levitation unit with a single electromagnet. 

 
Figure 1 The structure of the minimum electromagnet unit 

 
Neglecting the influence of magnetoresistance between the levitation gaps as well 

as leakage magnetism between the electromagnet windings, a set of dynamic equation 
for the electromagnetic single electromagnet levitation system can be obtained. The 
vertical equation can be further simplified due to the presence of current saturation in 
the actual controller: 
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where m is the mass of the electromagnet, x(t) is the levitation gap, N is the number 
of turns of the electromagnet coil, A is the area of the magnetic poles, i(t) is the current 
of the electromagnet coil, μ0 is the air permeability, fd is the external disturbance, and 
g is the gravitational acceleration.  
 

2  Controller design 
 
In this section, a high-speed maglev nonlinear model predictive controller and an 
aerodynamic load RRBF predictor are designed. 
 

2.1 Model predictive controller 
 
The nonlinear model predictive controller mainly consists of a dynamic predictive 
model, an online rolling optimization algorithm and a feedback correction loop. The 
algorithm will, at each moment, compute online a constrained optimization problem 
in a finite time domain based on the current state and the predicted disturbances. The 
next moment will update the measured state and repeat the above steps to form a 
rolling optimization. 

As shown in Figure 2, at each sampling step, first the RRBF predicts the 
unmeasurable aerodynamic loads in real time based on the current measurable state. 
Then the prediction model of MPC is corrected to enable the dynamic prediction 
model to have strong future prediction capability. The rolling optimizer then solves 
the open-loop optimization problem in the finite time domain in real time by 
combining the control quantities, state constraints and cost functions. Finally, the first 
control quantity of the optimal sequence is imported into the controlled system. 
Considering the error between the prediction and the real model, the feedback session 
will delay the calculation of the error between the current prediction and the real state, 
and compensate the next prediction quantity to further improve the prediction ability 
of the dynamic model. 

 
Figure 2 Schematic diagram of RMPC 

 
Taking into account that the sensors can measure the gap state in real time, the non-

singular transformation of the coordinates of the nonlinear system into a controllable 
linear system is performed by introducing a new control quantity w: 
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equation of state is expanded for the measured current (control quantity) state. The 
discrete state equations for the expansion of the measured current can be obtained:  
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ξ(k) is the expanded state variable, ξ(k)=[X(k) W(k-1)]T; W(k-1) is the measured 
control input; ΔW(k) is the control input increment, η(k) is the expanded output, Ak is 
the expanded state matrix, Bk is the expanded control matrix, Ck is the expanded output 
matrix, and Fk is the expanded disturbance matrix. X(t) is the state variable of the 
system, w(t) is the constructed feedback control input, Y(t) is the output of the system, 
Ac is the state matrix, Bc is the control matrix, Cc is the output matrix, Fc is the 
perturbation matrix, fd is the measurable disturbances, x1 is the levitation gaps and x2 
denotes the velocity of the electromagnet. 
 

Assuming that the prediction space is Np, the control space is Nc, the disturbance 
space is Nf, and Nc<Nf=Np, the magnitude of the control quantity outside the control 
space is kept constant. To ensure that the levitation gap tracks the nominal gap 
accurately and smoothly. In addition, to avoid sudden changes in current during the 
control process. The finite time domain optimal control cost function considers the 
effects of the prediction output error and the control quantity changes: 
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By considering the model predictive control rolling optimization structure, the first 
element of the optimal control sequence is fed into the control system at each moment 
in time. 

 ( ) ( ) [ ] ( ) ( ){ }
1
2

1 11 0 0u t wxt t t= ∆ + −U  (5) 

 

2.2 Recursive radial basis neural network load predictor 
 
It is difficult to measure or accurately predict the time-varying external loads of a 
magnetic levitation vehicle during its actual operation. As the vehicle speed increases, 
the external load represented by the aerodynamic load increases significantly, and its 
effect on the levitation stability cannot be ignored. To solve this problem, this paper 
introduces a radial basis neural network predictor [13]. RBF is a forward neural 
network, and its structure is shown in Figure 3. The network consists of an input layer, 
a single hidden layer and an output layer. The hidden layer and the output layer are 
connected linearly. Therefore, compared to the multilayer perceptron (MLP), the RBF 
training and running is faster due to the simple and lightweight structure without 
lengthy loop computation. Gaussian basis function has better prediction effect. And 
the output of RBF neural network can be expressed as: 
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where ξ(k) is the input vector, Fp is the prediction vector. The designed network 
has N hidden layers, the hidden layer output is ϕ, the weights of the hidden and output 
layers are wi, ci is the centre of the hidden layer Gaussian function, and di is the 
Gaussian function width. 

Traditional RBF architectures do not consider the past state of the input data. In 
general, temporal memory in neural network architectures can be represented either 
spatially or dynamically. The spatial method converts temporal information into 
spatial information [14]. The dynamic method stores historical information implicitly 
inside the network through recursive neurons [15]. In this paper, by introducing 
recurrent loop neurons with historical information, RRBF can have a dynamic 
memory capability for time delays. The scheme of the RRBF neural network is shown 
in Figure 4. Due to the difference in the input unit system, the network cannot learn 
the data equally. Therefore, in order to learn the information equally and 
comprehensively, the effect of the unit system is eliminated using a normalization 
method based on the maximum and minimum values. In addition, in order to enhance 
the network's learning of the current state, a forgetting factor is introduced. The state 
memory is gradually forgotten with the continuous input of time series until it is 
replaced by new data. Thus, the proposed new RRBF network can be expressed as: 
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where γ is the forgetting factor, t0 is the delayed memory time, nk is the number of 
delayed memory neurons, and f(t) is the RBF expression. 
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Figure 3 RBF network architecture      Figure 4 RRBF network architecture 

 
Centres and widths are determined using unsupervised learning: The strength of 

RBF neural networks lies in the local representation of the N-dimensional space. In 
this paper, the K-MEANS clustering algorithm is used to determine the RBF centres. 
The maximum cluster width of each family is then calculated according to the KNN 
algorithm. The supervised learning is used to determine the weights between the 
hidden and output layers. Specifically, an adaptive gradient descent algorithm with a 
small batch training sets (Batch-Adam) is used. The network input vector includes the 
actual levitation gap error, gap change velocity, gap change acceleration and measured 
current. And the network output is the real-time aerodynamic load. By learning the 
simulation results of lift-vehicle-rail coupling maglev dynamic, the prediction results 
of loads are shown in Figure 5, 6 and Table 1. 

 

 
Figure 5 RRBF prediction results for the training sets 
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Figure 6 RRBF prediction results for the test sets 

 
Load prediction R2 MAE 

Training sets 99.324% 0.18382 

Test sets 94.796% 0.36455 

Table.1 Comparison of RRBF prediction results 
 

The individual network structure of this network is 4-60-1, with a forgetting 
factor γ =0.9, a delayed memory time t0=0.01s, and a number of delayed memory 
neurons nk =10. Analysing Figure 5, 6 and Table 1 it can be found that R2 = 99.324% 
and MAE = 0.18382 for training sets and R2 = 94.796% and MAE = 0.36455 for 
testing sets. The designed RRBF network can accurately predict the loads for 0.01s.  
 

3  Simulation results 
 
The goal of levitation control of maglev vehicles is to keep the levitation gap of 
electromagnet stable near the reference gap (10mm) with as little fluctuation. The 
initial/maximum levitation gap is 20mm, and the minimum levitation gap is 0 mm. 
Based on the TR08 high-speed maglev minimum levitation unit dynamics and control 
co-simulation model [10,11]. The control performance of the PID and RMPC 
controllers are compared. The controller parameters are shown: Np=5, Nc=3, Nf=3, 
Q=1×1019, R=1, electromagnet mass 603kg, levitation frame mass 660kg, body mass 
490kg, first suspension stiffness 2×107 N/m, second suspension stiffness 2.0×105 N/ 
m. 
 

3.1 Under harmonic aerodynamic load conditions 
 
CFD simulations of a 600km/h maglev vehicle revealed that the aerodynamic lift 
fluctuations are significant at high speeds and that the aerodynamic lift can reach up 
to 40% of the vehicle weight [16]. Thus, the simulation is divided as: 

Group1: ( )1 0.20 1 sin 2 2F mg tπ= ⋅ + ⋅   ; Group2: ( )2 0.20 1 sin 2 4F mg tπ= ⋅ + ⋅   ; 

Group3: ( )3 0.20 1 sin 2 6F mg tπ= ⋅ + ⋅   ; Group4: ( )4 0.20 1 sin 2 8F mg tπ= ⋅ + ⋅    
The levitation gap versus time history curves are shown in Figure 7. Analysing the 

red curve reveals that the electromagnet under the PID controller encounters a track 
collision problem under 4 Hz harmonic lift (reach the minimum levitation gap). The 
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control performance of the PID controller decreases, and the electromagnet levitation 
gap fluctuates significantly around the nominal gap of 10mm. The gap fluctuation is 
greater than 2mm with some offset and divergence tendency. The PID controller has 
limited anti-interference capability. RMPC controller has a maximum deviation of 
0.8mm gap error under 2Hz load. In addition, the maximum deviation is 1.0mm at 
4Hz, 3.0mm at 6Hz, and 0.8mm at 8Hz. Therefore, the RMPC can effectively inhibit 
vibration caused by high-speed aerodynamic loads. By solving the rail collision 
problem, the anti-interference ability and robustness of RMPC are better than that of 
PID controller. 

 

 
Figure 7 Harmonic aerodynamic load conditions co-simulation results 

 

3.2 Under harmonic track irregularities conditions 
 
The long-wave irregularities due to track joints can significantly affect the stability of 
a maglev vehicle. The track long-wave irregularities are related to vehicle speed and 
track length. Using the 50-metre double-span beam of the Shanghai Maglev 
Demonstration Line as a calculation standard, the track harmonic irregularity 
excitation is designed for low, medium and high-speed phases: 

Group1: ( )180 / 3 sin 2 2.0km hD mm tπ= ⋅ ⋅ ; Group2: ( )360 / 3 sin 2 4.0km hD mm tπ= ⋅ ⋅ ; 
Group3: ( )603 / 2 sin 2 6.7km hD mm tπ= ⋅ ⋅ ; Group4: ( )720 / 1 sin 2 8.0km hD mm tπ= ⋅ ⋅  

Figure 8 shows the levitation gaps under different harmonic track irregularities. 
From the fluctuation of the gap in the steady state section, it can be seen that the track 
long-wave irregularities significantly change the suspension stability of the vehicle, 
and the electromagnet fluctuates around the nominal gap. The fluctuation of the 
RMPC is smaller than that of the PID. The maximum deviation of the PID is 0.5 mm 
at 180 km/h, 3.0 mm at 360 km/h, 1.5 mm at 603 km/h, and 1.6 mm at 720 km/h. 
RMPC can well suppress the vibration in the middle and high-speed stages: the 
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maximum deviation of 360 km/h is 1.5 mm (50.0% suppression), 603 km/h is 1.3 mm 
(13.3% suppression), and 720 km/h is 0.9 mm (43.8% suppression). Therefore, RMPC 
is more robust and anti-interference, which makes it suitable for high-speed magnetic 
levitation control. 

 

 
Figure 8 Harmonic track irregularities conditions co-simulation results 

 

3.3 Under non-stationary aerodynamic loads and random track 
irregularities 
 
In order to verify the robustness of the proposed algorithm, the severe working 
conditions under the combined effect of random track irregularities and non-stationary 
aerodynamic loads are tested. ±2mm random track irregularity is imposed on the 
system as shown in Figure 9. The designed load is shown in Equation (8). The non-
stationary loads and RRBF predictions are shown in Figure 10. The numerical 
simulation results are displayed in Figure 11. 

 

( ) ( ) ( ) ( )0.30sin 2 0.22sin 4 0.14sin 12 0.5 0.12sin 10rF mg t t t tπ π π π π= + + + +   (8) 

 
Figure 9 Track vertical irregularity         Figure 10 RRBF load prediction 
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Figure 11 Non-stationary aerodynamic loads and random track irregularities co-

simulation results 
 

The electromagnet started levitating from an initial position of 20mm at 0s and 
levitated to a nominal clearance of 10mm. The track irregularities are loaded 
synchronously from 0s, and the designed non-stationary aerodynamic loads are 
applied from 2s. According to Figure 10, the combined effect has an effect on RRBF, 
and the prediction ability appears to be degraded. But RRBF can still predict the time-
varying non-stationary aerodynamic loads. Hence RRBF can correct the prediction 
model accurately. RMPC can optimize an optimal control sequence based on the 
dynamic predictive model. The robustness has greatly improved by forwardly 
counteracting disturbances. In Figure 11, the fluctuations of the electromagnet gap 
under RMPC control are much smaller than PID’s. The maximum gap error for RMPC 
is 0.67 mm and the maximum gap error for PID is 6.65 mm. Therefore, the proposed 
RMPC scheme has stronger disturbance suppression capability and robustness. 
 

4  Conclusions 
 
To enhance the anti-interference capabilities of the levitation control system in high-
speed operational environments, this paper introduces the Recursive Radial Basis 
Function Neural Network-based Model Predictive Controller (RMPC). Leveraging 
the RRBF for aerodynamic load prediction, this innovative approach advances the 
network's predictive abilities by implicitly incorporating historical information 
through the structure of local dynamic recursion. The RMPC, an amalgamation of 
Model Predictive Control (MPC) and RRBF, achieves optimal roll optimization 
within the finite time domain while adhering to constraints. The foundational 
Nonlinear Model Predictive Controller (NMPC) adeptly handles the nonlinear 
characteristics of the Electromagnetic Suspension (EMS) system. Simultaneously, the 
RRBF excels in forecasting external disturbances in advance. This combined RMPC 
performs feed-forward compensation for disturbances, effectively suppressing 
vibrations through rolling optimization. The symbiotic relationship between RRBF 
and MPC enhances the intelligence of the levitation control algorithm. Conducting 
extensive numerical studies using the TR08 electromagnet dynamics and control co-
simulation model, our findings underscore the remarkable anti-disturbance 
capabilities of RMPC. Under the joint influence of random track irregularities and 
high-speed non-stationary aerodynamic loads, RMPC emerges as a superior choice 
for high-speed magnetic levitation control. 
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