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Abstract 

 
To improve the suspension control effect of the high-speed maglev train, a model 

predictive control (MPC) algorithm considering the disturbance force is designed 
based on the electromagnet suspension system unit of the maglev train. When 
constructing MPC algorithms, the influence of disturbance force on the system is 
commonly disregarded. However, neglecting this effect may lead to the failure of the 
predictive model and subsequently impact the performance of the control algorithm. 
In the paper, the disturbance force is incorporated as input to establish the state 
prediction model of the suspension system. The predicted values are then corrected 
by the error between the actual and the predicted state. Subsequently, the objective 
function and relevant constraints for the suspension system are designed, and the 
optimal control quantity of the system is obtained by rolling optimization. Finally, the 
performance of the MPC controller is evaluated through numerical calculations. 
Research results indicate that, in comparison with the traditional proportional-
integral-derivative (PID) feedback controller, the MPC controller proposed 
effectively suppresses the fluctuation of the suspension gap. Moreover, incorporating 
the disturbance force into the predictive model of the system's state can further 
optimize the performance of the MPC controller. 
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1  Introduction 
 
Electromagnetic suspension (EMS) trains rely on the electromagnetic force between 

the suspension electromagnet and the track to counteract gravity, achieving 
suspension [1]. This approach avoids contact between the track and the vehicle. 
Compared with traditional vehicles, EMS maglev trains have the advantages of low 
energy consumption, low environmental impact, low noise, less maintenance, and 
strong climbing ability [2-3]. The suspension system of the EMS maglev train is 
inherently unstable and depends on real-time control. Therefore, to achieve the 
reliable and stable performance of the train, we must focus on the enhancement of the 
suspension control system.  

Currently, the EMS maglev train adopts the proportional-integral-derivative (PID) 
control algorithm [1, 4]. The PID algorithm constitutes a control according to the 
deviation between the train's desired and actual suspension gap. This deviation is 
linearly combined by proportional, integral, and differential to compute a control 
quantity, ensuring the stable suspension of the train. However, this PID algorithm has 
some disadvantages, including the control parameters are difficult to change after 
loading and susceptibility to the impact of model errors during the design phase. These 
factors lead to the poor robustness and stability of the off-line PID control. With the 
continuous improvement of the speed of maglev trains, the influence of aerodynamic 
load becomes more and more significant. To control the suspension system more 
effectively, many more advanced control algorithms are applied to the suspension 
control system of the maglev train, such as sliding mode control [5-6], robust control 
[7], fuzzy control [8-9], and so on. For example, Nath [10] introduces fuzzy logic into 
the suspension system of the simplified maglev train and combines it with the 
traditional control algorithm to design a fuzzy controller. The calculation results show 
that this controller exhibits good performance in efficiency and self-regulation 
compared to a simple PID controller. However, fuzzy control relies heavily on expert 
experience. Yang and colleagues [11] propose a dynamic sliding surface based on the 
disturbance estimation of the suspension system. Following this, they establish a 
continuous dynamic sliding mode control (CDSMC) method that applies to the 
suspension control system. Results show that this method can improve the 
performance and stability of the suspension system. Gao [12] proposes a control 
method based on sliding mode periodic adaptive learning control (SM-PALC). This 
approach aims to reduce the position error of the maglev train suspension system and 
improve the robustness of the control system. However, this algorithm depends on the 
accuracy of the model. Ni [13] presents an improved nonlinear mathematical model 
of electromagnetic force for the suspension system of the EMS maglev train. This 
model is utilized to develop a robust controller. Simulation and semi-physical 
experiments verify that the controller can make the system track the target trajectory 
stably under disturbance. Benomair [14] proposes a fuzzy sliding mode controller 
with a nonlinear observer for the magnetic suspension system.  The simulation results 
demonstrate that this controller facilitates better stable suspension of the system. 

Nevertheless, all the aforementioned algorithms control after the changes in the 
vehicle state, and they are not out of the scope of traditional feedback control. Due to 
the existence of time delay, the suspension system state may have changed greatly 
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when the time feedback control is executed, which affects the stability of the system. 
At high speeds, the conventional feedback control algorithm for the maglev train is 
susceptible to experiencing control failures. To improve the insufficiency of offline 
optimization and hysteresis of traditional algorithms, this paper introduces model 
prediction control (MPC) into the suspension control of maglev trains. Then, an 
intelligent control algorithm is proposed, which can proactively control before the 
train state changes. This MPC algorithm utilizes the prediction model to estimate the 
future dynamic behavior of the system under certain control and continuously rolls 
forward to obtain the optimal control quantity according to the constraints [15-17]. 
The MPC algorithm employs a finite-time optimization strategy that rolls forward in 
time, which signifies that the optimization process is not a one-time offline operation 
but rather a repeated online procedure. In contrast, traditional control methods 
typically solve for a feedback control quantity offline and then continuously apply 
that control quantity to the system. Furthermore, the MPC algorithm can predict the 
future dynamic behavior of the system and control it in advance according to the 
difference between the actual and the expected behavior. This capability helps prevent 
excessive disturbance when the train encounters strong impact loads, thus it also has 
the advantage of feedforward control. In recent years, MPC has seen a gradual 
application in various control domains. Examples include trajectory tracking for 
autonomous vehicles [18-19], control of automobile engines [20], steering control in 
automobiles [21], and robot control [22]. Du [23] presents a variable predictive time-
domain MPC method for improving vehicle lateral stability control of vehicles. The 
approach is grounded in a three-degree-of-freedom model for vehicle lateral 
dynamics. Simulation results demonstrate the algorithm's effectiveness in improving 
trajectory tracking accuracy and enhancing the lateral stability of autonomous 
vehicles. Chen [24] develops an optimized power management strategy for fuel cell 
hybrid electric vehicles using improved MPC. The reliability and effectiveness of this 
strategy have been verified through simulations and experiments. These research 
findings indicate that the MPC algorithm performs exceptionally well in controlling 
the target trajectory and optimizing multivariable problems within the control system. 
It demonstrates robustness and delivers excellent control performance.  

The primary goal of controlling the suspension system of the maglev train is to 
maintain stable suspension close to its desired position. In addition, to meet the 
requirements of safety and ride comfort, the train must adhere to operational limits 
concerning the maximum gap and acceleration. Therefore, the control problem of 
maglev trains is essentially a time-varying multi-constraint optimization problem. 
Based on the previous research results, this paper aims to apply MPC to the suspension 
control system of high-speed maglev trains and propose a more efficient control 
algorithm. The suspension system of the maglev train consists of multiple 
electromagnet suspension units. Since the train adopts a modular decentralized 
structure, it is possible to control the train in a decentralized manner. This means that 
the suspension control system of the single electromagnet can be designed 
independently to achieve the overall design of the vehicle's suspension control system, 
leading to a streamlined and simplified control system design. Hence, focusing on a 
single electromagnet as the research subject, an MPC algorithm is developed 
specifically for the suspension system. Nevertheless, it is noteworthy that some 
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scholars ignore the impact of disturbance forces during designing MPC algorithms 
[25]. In reality, these disturbance forces have an important influence on the dynamic 
response of the system. Neglecting these disturbance forces in the construction of the 
prediction model can result in inaccuracies in system predictions, thus affecting the 
controller's performance. Therefore, two prediction models are formulated—one 
taking into account the disturbance force and another disregarding it. Subsequently, 
the MPC algorithm for maglev control systems is built based on these distinct 
prediction models. Ultimately, the effectiveness of these algorithms is verified by 
numerical calculations. 
 

2  Suspension system of single electromagnet 
 

The vertical motion of the electromagnet for maglev trains is shown in Figure 1. 
Assuming that the mass of the electromagnet is m and the vertical downward is the 
positive direction, the vertical motion equation of the electromagnet can be written as: 

 ( ) ( ), dmz mg F i z f t= − +&&  (1) 
 In Equation (1), z represents the relative distance between the electromagnet and 

the track, that is, the suspension gap of the electromagnet. fd is the disturbance force 
(primary suspension, lift). F (i, z) represents the electromagnetic force, and i is the 
control current in the electromagnet. 

 
Figure 1:  Electromagnet motion model. 

The instantaneous inductance of the electromagnet coil is: 

 ( ) ( )
2

0,
2

N AL z i
z t

µ
=  (2) 

In Equation (2), μ0 represents the air permeability, A represents the effective area of 
the electromagnet, and N is the number of coil turns. 

Assuming that the variation of the excitation current and the coil inductance is 
independent of each other, the electromagnetic force between the electromagnet and 
the track [26] can be expressed as: 

 
 ( ) ( )

2 2
2 0

2

[ ( )]1, { ( )[ ( )] }
2 4[ ]

N A i tdF i z L z i t
dz z t

µ
= =  (3) 

The equilibrium state of the electromagnet's stable suspension is (i0, z0), where i0 
represents the stable current, and z0 denotes the stable suspension gap. Let Δi be the 
current disturbance relative to the equilibrium state i0, and Δz be the gap fluctuation 
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of the electromagnet relative to the equilibrium position z0. The electromagnetic force 
in Equation (3) can be written as: 

 ( )
( )

22
0 0

2
04

AN i i
F

z z
µ + ∆

=
+ ∆

 (4) 

Equation (4) is expanded by Taylor series: 

 ( )
( )

( )
1 222 2

0 0 2 20
0 02 2

0 0 00

2 1 2 3
44

AN i i AN z zF i i i i
z z zz z

µ µ  + ∆    ∆ ∆ = = + ∆ + ∆ − + +   
+ ∆      

L  (5) 

Ignoring the influence of higher order Δi and Δz, we obtain:  

 
2 2 2 2

0 0 0 0 0 0
0 2 3

0 0 0

( , )
4 2 2

F F AN i AN i AN iF i z F i z i z
i z z z z

µ µ µ∂ ∂
= + ∆ + ∆ = + ∆ − ∆

∂ ∂
 (6) 

The linearized model of the single electromagnet's suspension system at the 
equilibrium point is: 
 ( ) ( ) ( ) ( )d i z dm z t F f K i t K z t f t∆ = −∆ + = − ∆ + ∆ +  (7) 

Where Kz and Ki are the gap proportionality coefficient and the current 
proportionality coefficient, respectively. The values of these coefficients are: 

2 2
0 0

3
0
2

0 0
2

0

2

2

Z

i

AN iK
z

AN iK
z

µ

µ


=



 =

 

At the equilibrium point (z0, i0), there is: 

 ( )
22

0 0
0 0 0

0

,
4
N A img F i z

z
µ  

= =  
 

 (8) 

Let 1 2,  ,  x z x z u i= ∆ = ∆ = ∆ , [ ]T1 2x x=x . Then the linearized state equation of 
the system is: 

 1 1 1

1

du f
y
= + +
=

 x A x B G
C x

 (9) 

Where, [ ]1 1 1 1

0 1 0 0
,  ,  1 0 ,  10z iK K

m m m

     
     = = = =−     
     

A B C G  

3  MPC algorithm for suspension systems 
 

3.1 State prediction equations for electromagnets 
 
The forward Euler method is employed to discretize the state equations in Equation 

(9), resulting in a linear time-invariant state space model for the electromagnet:  

 2 2 2

2

( 1) ( ) ( ) ( )
( ) ( )

dk k u k f k
y k k

+ = + +
=

x A x B G
C x

 (10) 

Where, A2=I+TA1, B2=I+TB1, C2=C1, G2= TG1. T stands for control period. 
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Assuming that the prediction time domain of the system is P. Recursively, the 
predicted value of the system state for the next n (n=1, 2, …, P) moments can be 
obtained:  

 
2 2 2

1 1
2 2 2 2 2 2 2

2

( ) ( 1) ( 1) ( 1)
( ) ( ) ( 1) ( ) ( 1)

( ) ( )

d
P P P

d d

k n k n u k n f k n
k u k u k n f k f k n

y k n k n

− −

+ = + − + + − + + −

= + + + + − + + + + −
+ = +

 

x A x B G
A x A B B A G G

C x
 (11) 

Combining Equation (11) into matrix form, we have: 

 1

1 1

k k k k

k k

+

+ +

= + +
=

X AX BU GF
Y CX

 (12) 

Where: 

( )T2
2 2 2

P= A A A A , ( )T
2 2 2= C C C C  

2

2 2 2

1 2
2 2 2 2 2
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0
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 
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 =
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 
 





   



B
A B B

B

A B A B B

2

2 2 2

1 2
2 2 2 2 2

0 0
0

P P− −

 
 
 =
 
 
 




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

G
A G G

G
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The disturbance at a future time is unknown, assuming that the disturbance remains 
constant at the current value, i.e.: 
 ( 1) ( 1) ( )d d df k P f k f k+ − = + =  (13) 

Then the disturbance force coefficient matrix G in Equation (12) can be simplified 
as: 

2

2 2 2

1
2 2 2

P−

 
 + =
 
 

+ 





G
A G G

G

A G G

 

3.2 Feedback correction 
 

The prediction model may exhibit errors attributed to identification inaccuracies. 
To address the impact of these uncertainties on the prediction model, a feedback 
correction is introduced in the MPC algorithm. This feedback element is designed to 
rectify the errors of the state prediction for the electromagnet, thereby improving the 
calculation accuracy of the prediction model. The specific process is as follows: At 
each time step, the MPC algorithm detects the actual output result and corrects the 
prediction result using the error between the actual and predicted state outputs of the 
electromagnet. This element provides predictive control feedback to momentarily 
correct the predicted value of the electromagnet state. The corrected prediction value 
of the electromagnet state at time k+n (n=1, 2, …, P) is: 

 
*

1 1

k k k
p

k k k

e y y
eδ+ +

= −

= +Y Y E
 (14) 

Where y*
k and yk represent the actual output and predicted output of the 

electromagnet state at time tk, respectively. Y pk+1 represents the predicted value after 
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correction. E denotes the unit vector of dimension P*1. δ represents the feedback 
correction coefficient, and there is no clear and effective method to select its value. 
Usually, an appropriate value can be determined through empirical setups and 
simulation trials. 
3.3 Rolling optimization 

In order to guarantee a stable suspension state for the maglev vehicle during its 
operation, it is hoped that the state output value of the electromagnet (i.e., suspension 
gap) can be close to the predetermined target value. To make the electromagnet's 
suspension gap approach the target value in the future, the quadratic function is 
adopted as the performance index function of rolling optimization. We define the 
reference suspension gap sequence in the prediction time domain as follows: 
 ( )T

0 0 0( 1) ( 2) ( )z k z k z k P= + + +R  (15) 
Let the control time domain be equal to the predicted time domain P, then the 

optimal performance index function for the control quantity of the electromagnet 
suspension system is: 

 ( ) ( ) ( )
( ) ( )

T T
1 1

T T

min p p
k k k k k

k k k k k k k k

J

e eδ δ

+ += − − +

= + + − + + − +

U Y R Q Y R U WU

AY BU GF + E R Q AY BU GF + E R U WU
 (16) 

Considering the limitation of suspension gap and control current during maglev 
train operation, the constraints of the indicator function are: 

 min max

min max

p
k

k

<
<

Y < Y Y
U < U U

 (17) 

Where, ( )T( ) ( 1) ( 1)k u k u k u k P= + + −U  represents control sequence. Q 
represents the error weight coefficient, which indicates the proximity between the 
predicted and the expected output. W is the system's weighting coefficient for the 
control increment. The larger the value of W, the smoother the desired change in 
control, which typically takes a value between 0 and 1. 

Let k k= eδ+ −Z AY GF + E R , then Equation (16) can be reduced to: 

 
( ) ( ) ( )

( )

T T

T T T T

min
1 2 2
2

k k k k k

k k k

J = + + +

 = + + + 

U Z BU Q Z BU U WU

U 2B QB W U Z QBU Z QZ
  (18) 

At time tk, the unknown in Equation (18) is only the vector Uk. Therefore, the 
purpose of rolling optimization is to minimize the objective function J of the control 
sequence Uk. In summary, the predictive control optimization problem of the 
electromagnet suspension system can be finally reduced to a linear programming 
problem. Because it is very difficult to solve the nonlinear equation, local numerical 
optimization is employed to solve a suboptimal solution of the equations. 

For the quadratic function J, the variable is Uk. Using the Newton iteration method, 
the control quantity of the suspension system is:  
 ( ) 11 j j−

= −j+ j
k kU U H J  (19) 

Where Jj is the jacobian matrix of the jth iteration: 
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( ) ( 1) ( 1)j
J J J J

u k u k u k P
 ∂ ∂ ∂ ∂

= =  ∂ ∂ ∂ + ∂ + − 
J

U
, 

Hj is the hessian matrix of the jth iteration: 
2 2 2

2

2 2 2
2

2
2

2 2 2

2

( ) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( 1) ( 1)

( 1) ( ) ( 1) ( 1) ( 1)

j

J J J
u k u k u k u k u k P

J J J
J

u k u k u k u k u k P

J J J
u k P u k u k P u k u k P

 ∂ ∂ ∂
 ∂ ∂ ∂ + ∂ ∂ + − 
 ∂ ∂ ∂
 ∂

= = ∂ + ∂ ∂ + ∂ + ∂ + − ∂  
 
 ∂ ∂ ∂ 
 ∂ + − ∂ ∂ + − ∂ + ∂ + − 





   



H
U

. 

Assign an initial value U0 to Equation (19), the values of J0, H0, and U1 can be 
calculated. Repeating the iteration process yields U2, and this iteration continues until 
a sequence U0, U1, U2, … is obtained. This sequence converges to the extreme point 
of the objective function. If the iteration terminates after the j-th iteration, the control 
quantity can be taken as Uk= Uj. 

 
3.4 Control algorithm 

 
In summary, the operational process of the (MPC) algorithm for the electromagnet 

suspension system is illustrated in Figure 2:  

 
Figure 2: MPC algorithm of single electromagnet suspension system. 

 
(1) Step 1: The state prediction model of the electromagnet is established using its 

motion equation. At time tk, the prediction model of the electromagnet suspension 
system utilizes the current state information to predict system states at future time 
steps [k +1, …, k + P]. 

(2) Step 2: Provide feedback correction to the predicted state values of the prediction 
model output, generating the final predicted output. 

(3) Step 3: Minimize the quadratic performance function J to obtain the control 
sequence Uk. 

(4) Step 4: The first element u*(k) from the control sequence Uk is selected as the 
control quantity of the controlled system, and it is applied to the electromagnet 
suspension control system. 
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At the next time step k+1, the new control sequence Uk+1 is calculated using the 
same procedure, and the first element u*(k + 1) in the sequence is used as the control 
quantity of the electromagnet suspension system. 
 

4  Calculation results of numerical model  
When constructing the prediction model, ignoring the influence of disturbance force 

can result in prediction errors, consequently affecting the effectiveness of the 
controller. In order to determine a more effective MPC algorithm, this study 
formulates two prediction models—one considering the disturbance force and another 
disregarding it. Subsequently, the performance of the MPC controller under these two 
prediction models is calculated. 

In order to verify the control performance of the proposed MPC controller in the 
single-point suspension system, this paper selects the electromagnet suspension gap 
under PID controller as the reference parameter. A comparative analysis is then 
conducted to assess the effectiveness of the MPC controller in suppressing the 
suspension gap fluctuation under different loads. The control logic of the PID 
controller employed in this study is depicted in Figure 3. Here, KP, KI, and KD denote 
the proportional, integral, and derivative parameters, with specific values of 7000, 
1000, and 800, respectively. 

 

 
Figure 3: PID control algorithm of single electromagnet suspension system. 

 
In this study, the electromagnet suspension system of the Shanghai TR08 maglev 

train is taken as the research object. According to the state equation of Equation (9), 
the dynamic numerical model of the electromagnet suspension system is established 
using Matlab/Simulink. The main parameters are outlined in Table 1. 

 

Parameter Value 

mass of electromagnet m 330 kg 

area of magnetic pole A 0.0259 m2 

number of coils N 290 

current of equilibrium point i0 20 A 

gap of equilibrium point z0 0.01 m 
Table 1: Electromagnets information of the TR08 maglev train. 
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Subsequently, the controller of the electromagnet suspension system is established 
based on the MPC algorithm proposed in Chapter 3. The pertinent parameters for this 
MPC algorithm are detailed in Table 2. In this study, the controller's effectiveness is 
analyzed by comparing the electromagnet fluctuation results in the suspension system 
under load disturbance. The desired suspension gap for the electromagnet is set at 10 
mm. The closer the suspension gap is to this ideal value, the more stable the 
suspension system, indicating the superior anti-interference effect of the controller. 

 

Parameter Value 

control cycle T 0.001 s 

prediction (control) time domain P 20 

feedback correction coefficient δ 0.8 

state error weight Q 1*IP*P 

Note: IP*P is the unit matrix of P*P dimension. 
Table 2: Parameter information in the MPC algorithm 

 

Firstly, the suspension operation of electromagnet under the steady load is simulated. 
From 0 to 5 s, a steady load of 8 kN was gradually applied to the electromagnet, 
followed the load remains maintained. The calculation results of the electromagnet 
suspension gap are illustrated in Figure 4. When employing the PID algorithm in the 
suspension system, the amplitude of the electromagnet fluctuation reaches 2.09 mm. 
However, under the conventional MPC controller, the amplitude of the electromagnet 
suspension gap fluctuation is reduced to 1.33 mm, which is 36.4% lower than that of 
the PID controller. Moreover, under the MPC controller considering the disturbance 
force in the prediction model (MPC-fd), the amplitude of the electromagnet suspension 
gap fluctuation decreased to 0.71 mm, representing a 66.0% reduction compared to 
the PID controller. 

 

 
Figure 4: Electromagnet suspension gap under steady load. 

 
Similarly, the suspension test on the electromagnet suspension system subjected to 

the harmonic load is conducted. The calculation results under different controllers are 
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shown in Figure 5. Employing the PID controller, the amplitude of the suspension gap 
fluctuation reaches 2.78 mm. When the MPC controller without considering 
disturbance force is applied, the amplitude of the suspension gap fluctuation of the 
electromagnet is reduced to 1.80 mm. While under the MPC controller considering 
the disturbance force in the prediction model (MPC-fd), the fluctuation amplitude of 
the suspension gap of the electromagnet is 0.94 mm. Compared with the PID 
controller, these two MPC controllers reduce the amplitude of the suspension gap 
fluctuation by 35.3 % and 66.2 %, respectively. 

 
Figure 5: Suspension gap of electromagnet under harmonic load. 

 
Under the disturbance of different loads, the controllers are evaluated for their 

suspension effectiveness. The most optimal performance among the three controllers 
is MPC- fd, followed by MPC, and PID is the least effective. These findings 
demonstrate that compared with the PID feedback controller, the MPC controller can 
better suppress the suspension gap fluctuation of the electromagnet and achieve a 
superior suspension stability effect. This MPC controller offers the advantages of 
local optimization and feedforward control, which can address the shortcomings 
associated with global optimization and lag control inherent in traditional control 
strategies. Moreover, considering the influence of disturbance force when establishing 
the electromagnet's dynamic response prediction model contributes to achieving more 
accurate response prediction and obtaining superior control effectiveness. 

 
5  Conclusions and Contributions 

 
In this study, a prediction model for the vertical dynamic response of the 

electromagnet is constructed according to the disturbed electromagnet motion. 
Subsequently, the optimization indexes and related constraints for the electromagnet 
suspension system are established based on the suspension objectives and limitations 
of the maglev train. Therefore, an MPC controller designed for the suspension 
electromagnet of the maglev train is proposed. Through numerical calculation, the 
following conclusions are drawn:  

1) In contrast to the PID feedback controller, the MPC controller can predict the 
future dynamic response of the suspension system and has the benefit of feedforward 
control. By optimizing the optimal control quantity of the suspension system at each 
moment in the finite time domain, the MPC controller effectively suppresses the 
fluctuation of the electromagnet suspension gap under load.  
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2) When constructing the prediction model for the dynamic response of the 
electromagnet, accounting for the impact of the disturbance force enhances the control 
efficacy of the MPC controller. 

3) The MPC controller designed based on the disturbed single-point suspension 
system demonstrates good stability, which can provide a valuable reference for 
achieving more efficient and stable suspension for high-speed maglev trains. 
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