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Abstract

Running safety on ballastless bridges is conditioned by the Eurocode EN 1990 A2 on
a limit for vertical acceleration. Although it seems this limit is indicative of avoid-
ing the loss of wheel-rail contact, it is unclear whether such accelerations correspond
to derailment situations. This communication presents a parametric study of five
single-span slab track bridges with varying levels of track quality. Using the High-
Speed Load Model A of the EN 1991-2 and a three-dimensional train-track-bridge-
interaction approach, deck acceleration and derailment criteria (Nadal and Unload-
ing) are calculated. The results indicate a poor correlation between acceleration and
the criteria. It is concluded that track quality is the conditioning factor.

Keywords: ballastless railway bridges, derailment, running safety, deck acceleration,
Eurocodes, high-speed railways.

1 Introduction

Like all civil engineering structures in Europe, railway bridges are designed according
to the Eurocodes. These norms are not, however, immutable, and are currently under
revision [1]. One aspect that has concerned researchers in recent years [2, 3] is the EN
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1990 A2 [4] limit for vertical deck acceleration. While the value for ballasted tracks
derives from tests commissioned by the European Rail Research Institute [5], the bal-
lastless track limit is likely based on the assumption that a 1 g deck acceleration may
imply wheel detachment. Furthermore, the normative values (respectively, 3.5 m/s2

and 5 m/s2) are based on a seemingly arbitrary safety factor of 2.0.
The scientific community has devoted resources to the study of ballastless bridges,

focusing on topics such as acceleration [6], local deck vibration [7], seismic action
[8], and passenger comfort [9]. The present communication focuses the relation be-
tween deck acceleration and wheel-rail contact, studying derailment risk with three-
dimensional train-track-bridge interaction (TTBI) models. The motivation of this
work is to address a) the correspondence between derailment and deck acceleration;
b) the indispensability of considering lateral dynamics; and c) the relative importance
of track quality compared to vibration in resonance.

2 Methods

The proposed methodology consists in performing a parametric study of 5 single-track
slab bridges with spans between 10 m and 30 m, each subjected to a critical load model
running at speeds from 140 km/h to 400 km/h. Each simulation takes into account 11
rail irregularities profiles: 1 smooth track, 5 high quality profiles, and 5 lower quality.
The metrics registered in each run are the maximum midspan vertical acceleration and
the time histories of the lateral Y and vertical Q contact forces for each train wheel,
to calculate derailment criteria (Nadal ξN and Unloading ξU ), using:

ξN =
Y

Q
(1)

ξU = 1− Q

Q0

(2)

where Q0 is the static load for each wheel. The normative limits are 3.5 m/s2 for
acceleration alim [4], 0.8 for Nadal Nlim [10], and 0.6 for Unloading Ulim [11].

The bridges where modelled after [12], with cross-sections that give accelerations
near the limit at around 380 km/h. The finite elements (FE) models where done in
ANSYS [13], using Timoshenko beam elements to model the deck, track slab and
rails, and spring-dashpots to model the concrete-asphalt mortar bed, subgrade and
fastenings. Rayleigh damping matrices are employed with ratios from [14]. Readers
are referred to the annexes in [3] for mechanical and geometric properties. A lateral
view of the model for the 25 m bridge can be seen in Fig. 1, which displays the first
bending mode. In Fig. 2, the 3D view shows how the deck is represented by a beam
in its center of gravity, with rigid elements connecting it to the rails.

Regarding the trains, the High-Speed Load Model A (HSLM-A) [14], which is a set
of moving point loads, is adapted for this study as 3D FE models of articulated trains,
with masses that represent the Eurocode’s axle loads [2] and primary and secondary
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Figure 1: Bending mode of the 25 m bridge FE model (n0 = 5.44 Hz).
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Figure 2: 3D view of the FE model.

suspension characteristics from the literature [15, 16]. The FE model, depicted in Fig.
3, uses beam elements for rigid beams, spring-dampers for the suspensions, and mass
elements for localized masses. Spherical joints connect the rigid connections between
shared bogies of adjacent carriages.

Each bridge is paired with a critical configuration from the 10 available HSLM-A
models. Using a simple moving loads approach, the maximum midspan acceleration a
is obtained for every train, as seen in Fig. 4 for the 25 m bridge. The train considered
as critical is the one that causes a surpassing of alim at around 1.2 times the design
speed of 320 km/h [14], i.e. circa 380 km/h.

The rail irregularities ζ profiles were generated using the German Power Spectral
Density (PSD) functions [17], with a wavelength interval from 3 m to 150 m. The
high quality track profiles consider longitudinal and alignment levels compatible with
a well-maintained track of the Chinese PSD [18], while the lower quality profiles
correspond to the alert limit from [19]. Fig. 5 exemplifies both levels.

The TTBI analyses are done with the numerical tool developed by [20] in MAT-
LAB [21], which uses a custom finite element for the wheel-rail interface. The Y and
Q responses are filtered with a low-pass, 4th-order Butterworth filter cut-off at 20 Hz
[11].
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Figure 3: FE model of the train.
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Figure 4: Maximum midspan acceleration for the 25 m bridge with the HSLM-A.
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Figure 5: Example realization of track’s vertical irregularities: a) well-maintained; b)
Alert limit.
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3 Results

The envelopes of the maximum values of deck acceleration and of the criteria are
shown in Fig. 6. Lines with the results considering smooth tracks are also depicted.
Through them, it is clear that the absence of rail irregularities results in near zero ξN
value, while for ξU , that scenario coincides with the lower bound of the envelopes.
The a curves for smooth tracks serve as a benchmark for the entire process, given
their similarity to the simplified moving loads assessment.

Looking at the envelopes, ξU generally increases with speed, with less evident
peaks at subharmonic speed values. Conversely, ξN is far less affected by resonance,
being only affected by track conditions. This is due to the increasing importance of
lateral force on each wheel and decreasing vertical forces as irregularities get worse.
Even so, the Alert limit irregularities are still notoriously far from producing effects
close to Nlim.

The results indicate that an assessment based on deck acceleration would result in a
negative evaluation (since alim is surpassed), even though on the same conditions the
derailment criteria are never indicative of failure. In fact, the maximum ξU calculated
is below 0.38 for the higher quality realizations and below 0.48 for lower quality. This
observation does not support the thesis of assessing running safety via deck accelera-
tion.

The conclusion is strengthened by using data points with pairs [a, ξN ] and [a, ξU ]
(represented in Fig. 7) and fitting linear regression models on them. The resulting
coefficients of determination (r2) show that the relation is insufficient to conclude that
deck acceleration is an indicator of derailment.

Given the distance of both criteria to the respective limits, it is worth running ad-
ditional simulations with irregularity levels even worse than the Alert limit. To that
end, 5 new profiles were generated where the standard deviation in the 3 m to 25 m
wavelength range was increased by 50% (σ3−25 × 1.5) and another 5 with a 100%
increase (σ3−25 × 2). This set was tested on the 25 m bridge at 390 km/h, which is the
clearest scenario with resonance. The resulting values in Fig. 8 have maxima ξU of
0.704 and ξN of 0.505, on the worst track conditions. It was necessary to double the
roughness of the lower track quality to have ξU above Ulim and ξN above 0.5.

Since the bridge vibration seems to have an almost negligible effect on the derail-
ment criteria, the same analyses of the 25 m bridge at 390 km/h where replicated with
a rigid bridge instead. The results, represented in Fig. 9, further sustain the obser-
vation that track condition controls the performance of the criteria, regardless of the
rigidity of the bridge. In fact, the sums of squared differences between both situations
is 0.04 for Unloading and 0.01 for Nadal.
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Figure 6: ξU , ξN and a envelopes. a) 10 m bridge; a) 15 m bridge; a) 20 m bridge; a)
25 m bridge; a) 30 m bridge.
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Figure 7: Acceleration and derailment criteria on all bridges at every speed. a) high
quality realizations; b) Alert limit realizations.
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Figure 8: Results with increased irregularities on the 25 m bridge. a) ξU ; b) ξN ; c) a.
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Figure 9: Influence of the bridge vibration. a) ξU ; b) ξN .

7



4 Conclusions & Contributions

The parametric analyses conducted in this communication question the use of an ac-
celeration limit for running safety evaluation. It is shown that ballastless bridges can
show accelerations above 5 m/s2 without a corresponding derailment criterion being
met. The Unloading criterion has a closer relation to acceleration than the Nadal crite-
rion, meaning that vertical dynamics are indispensable for the assessment of running
safety. 3D dynamics should not be neglected in the presence of relevant sources of
lateral instability. As for the relation with track quality, the Nadal criterion is almost
exclusively affected by it, while the Unloading criterion is somewhat more affected
by speed. Acceleration is, however, much more telling of resonance. For derailment
matters, track quality is the determinant factor.
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