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Abstract 

This paper presents an innovative AI-driven drive-by methodology for unsupervised 

damage detection on a Warren truss bridge. The methodology employs acceleration 

data collected from eight sensors mounted on a LAAGRSS-type freight wagon. 

Wavelet scattering coefficients derived from these acceleration signals serve as input 

features for the model. Autoencoders, trained on baseline condition data, are utilized 

to reconstruct these coefficients, with the absolute reconstruction error acting as a 

damage-sensitive feature. Environmental and operational variations are mitigated 

through normalization, excluding high-variability components. A three-level data 

fusion approach, based on the Mahalanobis distance, generates a highly sensitive 

damage indicator. This indicator accurately detects all simulated damage scenarios, 

including those in their early stages, without misclassification. The study 

demonstrates the efficacy of the proposed methodology also for distinguishing 

between different damage types. Future work will focus on experimental validation 

and enhancement of the methodology for assessing damage severity. 

Keywords: drive-by, damage identification, vehicle-structure interaction, wavelet 

scattering transform, autoencoders, data fusion. 
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1 Introduction 

Bridge health monitoring is crucial for maintaining the safety and functionality of 

railway infrastructure. Traditional methods of damage detection often require 

manual inspections, mainly based on visual checks, which can be time-consuming, 

costly and not efficient in early real time damage detection [1]. Within this context 

researchers have sought for more efficient and cheaper techniques. The concept of 

using vehicles as moving sensors (Figure 1), known as drive-by monitoring, comes 

as an economic alternative for monitoring large-scale infrastructures like railways, in 

which the instrumentation of the whole infrastructure is not feasible [1,2]. 

 
Figure 1: Indirect bridge monitoring concept. 

 

The drive-by concept was first introduced by Yang et al. [3], who demonstrated the 

feasibility of extracting bridge natural frequencies from acceleration records 

collected inside road vehicles. Since this pioneering work, numerous researchers 

have focused on developing new methodologies to extract not only natural 

frequencies but also other modal properties such as mode shapes and damping 

ratios, along with techniques for damage detection. For a comprehensive review of 

drive-by methodologies applied to railway infrastructures, refer to [4,5]. 

More recently, advancements in AI and data processing have been offering new 

possibilities for automated and unsupervised drive-by damage detection systems. In 

this context, the present work introduces an innovative AI-driven methodology for 

unsupervised damage detection on a Warren truss bridge. The proposed approach 

leverages acceleration data from a virtual monitoring system, consisting of eight 

sensors mounted on a LAAGRSS-type freight wagon. By computing wavelet 

scattering coefficients (WSC) from the acceleration signals, the methodology 

extracts features that are sensitive to bridge damage conditions. 

Initially, autoencoders are trained using a baseline scenario to reconstruct the WSCs, 

and the absolute reconstruction error (ARE) is then used as a damage-sensitive 

feature. To eliminate environmental and operational influences, normalization is 

performed using Principal Component Analysis (PCA). The methodology further 

integrates a three-level data fusion based on the Mahalanobis distance, combining 

frequency, sensor, and time dimensions into a single damage indicator. This robust 

indicator can detect damage at various stages without any misclassification. The 

proposed approach's efficacy is demonstrated through numerical simulations, 

highlighting its potential for early-stage damage detection. 



 

 

3 

2 Damage identification methodology 

A flowchart of the proposed AI-driven bridge damage identification methodology is 

presented in Figure 2.  

 

 

Figure 2: Flowchart of the proposed methodology. 

The proposed methodology utilizes a virtual monitoring system composed of 8 

acceleration sensors positioned on the first wagon of a train. The sensors are placed 

on both sides of the two axles and at four points directly above the wagon’s 

suspensions. The accelerations recorded at these points serve as inputs for the 

methodology. The proposed methodology involves a 5-step process implemented in 

MATLAB® [6], detailed as follows: 
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I. A preliminary set of features is extracted based on the wavelet scattering 

coefficients (WSC) of the acceleration signals computed for each sensor. 

This step is crucial for deriving time series properties that are more sensitive 

to the bridge damage condition. 

II. Eight autoencoders (one for each sensor) are then trained to reconstruct the 

WSCs from a baseline scenario, consisting of data acquired when the bridge 

is undamaged. A new feature is extracted based on the absolute 

reconstruction error (ARE) of the autoencoders computed individually for 

every scattering coefficient (time and frequency dimensions). 

III. Normalization of this new features is performed using the Principal 

Component Analysis (PCA) to remove the effects of operational and 

environmental variations. In this process the components associated with a 

larger variability are removed, since these are typically related to 

environmental or operational factors. 

IV. A three-level data fusion based on the Mahalanobis distance is performed. 

First, the WSCs associated with different frequencies are fused into a single 

indicator. Next, a sensor fusion is conducted. Finally, a fusion in the time 

dimension is performed, combining the time components into a single 

damage indicator. 

V. Lastly, automatic damage detection is carried out using outlier analysis. 

 

 

3 Numerical simulations 

In this section a brief overview of the numerical methodology used for validating the 

proposed methodology is presented. Firstly, the numerical models of the three 

railway subsystems (vehicle, track, and bridge) are presented. Later one details 

regarding the numerical vehicle-structure interaction simulation as well as the 

scenarios studied are presented. 

3.1 Freight wagon numerical model 

The wagon used in the simulations is a Laargss-type freight wagon (Figure 3a). This 

specialized wagon is designed for transporting containers and travels along the Beira 

Alta line of the Portuguese railway network, where it serves to transport paper rolls. 

Measuring 14.8 m in length, this wagon is supported by two axles spaced 10 m 

apart. The connection between the axles and the body is facilitated by four sets of 

progressive stiffness parabolic springs, secured by UIC double links. All the 

suspension system is standardized following the recommendations from [7]. With a 

tare weight of 27.1 t, the wagon has the capacity to carry loads of up to 24.9 t, 

totalizing 52 t. A multi-body type modeling strategy (Figure 3b) was chosen due to 

is low computational cost and good representation of the global wagon behavior [8]. 

The model features rigid bars to represent the wagon's structure, with the 

suspensions being modeled by spring-damper elements, these being the only flexible 

components in the model. 
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(a) (b) 

Figure 3: Laargss-type Freight wagon: (a) wagon view and (b) numerical model. 

The properties adopted for the numerical model are depicted in Table 1, based on the 

ones calibrated by [8] using experimental modal information. 

Table 1: Properties of the wagon numerical model [8] 

Parameter Symbol (Unit) Calibrated Value 

Car Body   
Mass mcb (ton) 45.72 

Moment of inertia about longitudinal axis Icb,x (t.m2) 49 

Moment of inertia about transverse axis Icb,y (t.m2) 562.8 

Moment of inertia about vertical axis Icb,z (t.m2) 665 

Length Lcb (m) 10.000 

Width Wcb (m) 2.170 

Height above ground Hcb (m) 2.297 

Wheelsets   
Mass mw (kg) 1247 

Moment of inertia about longitudinal axis Iw,x (kg.m2) 312 

Moment of inertia about vertical axis Iw,z (kg.m2) 312 

Track Gauge Wcp (m) 1.668 

Height above ground (wheelset) Hws (m) 0.450 

Suspensions   
Longitudinal stiffness k1,x (kN/m) 44981 

Lateral stiffness k1,y (kN/m) 30948 

Vertical stiffness k1,z (kN/m) 2252.7 

Vertical damping c1,z (kN.s/m) 35.73 

3.2 Track numerical model 

The numerical model of the track was developed using ANSYS® [9], based on the 

model described by Neto et al. [10]. This model consists of 3 layers representing the 

ballast, sleepers, and rails, which are interconnected through appropriate interfaces. 

The foundation level of the model is fully fixed, while the longitudinal stiffness of 

the track is provided by the springs' longitudinal stiffness in the different interfaces.  

Finite beam elements (BEAM4) are used to model the rails and sleepers, spring-

damper elements (COMBIN14) are used for the ballast, clamp, and foundation 

interfaces, and point masses (MASS21) are added at the ends of the sleepers, as 

illustrated in Figure 4. The mechanical properties of the track components were 
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adopted from the literature and are detailed in Table 2 as well as the symbols for 

these properties. 

 
Figure 4. Three-layer numerical model of the track: (a) Schematic representation and 

(b) three-dimensional model 

Table 2: Properties of the track numerical model. 

Component Parameter Description Value Reference 

Rail (UIC60) 

Ar Inertia (cm⁴) 76,7 

[11] 

Ir Density (kg/m³) 3038 

ρr Elastic Modulus (GPa) 7850 

Er 
Longitudinal/Transverse 

Stiffness (MN/m) 
210 

Clamps/Pads 

kfas,l/t 
Longitudinal/Transverse 

Damping (kN.s/m) 
20 

[12] 

cfas,l/t Vertical Stiffness (MN/m) 50 

kfas,v Vertical Damping (kN.s/m) 500 

[13] 
cfas,v 

Rotational Stiffness 

(kN.m/rad) 
200 

kfas,r Area (cm²) 45 [14] 

Sleepers 

As Inertia (cm⁴) 402,5 

[15] 

Is Density (kg/m³) 17620 

ρs Elastic Modulus (GPa) 2500 

Es 
Longitudinal Stiffness 

(MN/m/m) 
40,9 

Ballast 

kbal,l 
Transverse Stiffness 

(MN/m/m) 
30 [16] 

kbal,t Vertical Stiffness (MN/m/m) 7,5 

[14] 
kbal,v 

Damping in All Directions 

(kN.s/m/m) 
100 

cbal Density (kg/m³) 50 
[15] 

ρbal Vertical Stiffness (MN/m) 1995,9 

Foundation kfnd,v Inertia (cm⁴) 20 [17] 

To better approximate real-world conditions in the track modeling, the simulations 

incorporate artificially generated railway irregularity profiles based on power 

spectral density functions, covering wavelengths from 1 m to 75 m with a resolution 
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of 0.01 m. These irregularities were introduced into the simulations using the VSI 

numerical interaction tool, as detailed in Section 3.4. 

3.3 Bridge numerical model 

The numerical model of the bridge was developed and calibrated based on data 

provided by [18]. The bridge studied is an open Warren-type metal truss with a span 

of 21.42 m. For the design of its numerical model, ANSYS® [9] software and 

BEAM188 elements were used. The track was directly attached to the bridge 

structure with fixed connections to the crossbeams, eliminating the need for a ballast 

interface, as detailed in the construction specifications of [18]. A visual 

representation of the bridge model, indicating the elements to be evaluated in 

damage detection analyses, is shown in Figure 5. Damage is introduced in two 

distinct elements: one in a secondary component, a diagonal of the truss, and another 

in a more heavily stressed component, the lower chord of the truss bridge. 

 
Figure 5. Bridge numerical model with the damaged elements 

3.4 Vehicle structure interaction 

To conduct the simulations, the numerical tool "VSI - Vehicle Structure Interaction 

Analysis" was employed. Initially proposed by [13] and subsequently enhanced by 

[14] to incorporate lateral interaction in the wheel-rail contact model, this tool 

utilizes a 3D wheel-rail contact element that connects the different subsystems. This 

element manages the contact interface by computing the wheel-rail contact forces in 

the normal and tangential directions. During each time interval, the position of the 

contact point is determined, and the normal contact force is calculated using the 

nonlinear theory of Hertz [15]. The forces in the directions tangential to the contact 

plane are calculated based on Kalker's rolling contact theory [22], which is a 



 

 

8 

function of the "creepage" velocities between the wheel and the rail and the shape of 

the contact ellipse. These forces are computed based on the USETAB book of tables 

[23], considering track irregularities. The tool directly integrates the structural 

matrices of the numerical models in ANSYS® [9] for vehicle and structure, using 

MATLAB® [6]. This integration leverages the complexity of commercial FEM 

software while benefiting from the efficiency of MATLAB®  [6] programming. 

Figure 6 provides an overview of the VSI numerical tool. With such a tool, it is 

possible to accurately simulate dynamic responses (accelerations, velocities, and 

displacements) at any point in the structure. 

 
Figure 6. Framework of the VSI numerical tool 

All simulations in this study were conducted with a sampling frequency of 1,000 Hz 

to accurately capture the problem's dynamics. This frequency was chosen based on a 

sensitivity analysis that assessed its impact on the results. 

3.5 Simulation scenarios 

The proposed methodology was validated through a series of numerical simulations, 

encompassing both a baseline scenario (without damage) and various damage 

scenarios. To simulate common operational interferences in railway operations, 

these scenarios incorporated a range of operational and environmental factors, 

including different speeds, irregularity profiles, mass variations, variations in elastic 

modulus with temperature, measurement noise, and wagon positioning inaccuracies. 

The specific conditions applied to the baseline and damage scenarios are detailed in 

Tables 3 and 4, respectively. 

Table 3: Baseline simulation scenarios 

Condition 
Five LAAGRSS type freight 

wagons 

Speeds (km/h) 40/45/50/55/60 

Irregularity profiles 2 

Wagon mass variation (%) 90/95/100/105/110 

Variation in elastic modulus with temperature (‰) 975/1000/1025 

Positioning accuracy (m) ±1 

Measurement noise (%) 5 
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Table 4: Damage simulation scenarios. 

Condition 
Five LAAGRSS type freight 

wagons 

Speeds (km/h) 45/50/55 

Positioning accuracy (m) ±1 

Measurement noise (%) 5 

Damage scenarios (%) 1/2/5/10/20/30/50 

Individually damaged elements 2 

3.6 Dynamic responses 

As an example, Figure 7 illustrates the acceleration responses of the first wagon as it 

crosses the bridge at a speed of 50 km/h, considering various damage levels in the 

diagonal of the warren truss bridge (secondary element). Section (a) of the figure 

shows the vertical accelerations on the left side of the front wheelset, while section 

(b) displays the vertical accelerations on the left front side of the wagon body, 

directly above the suspension. All timeseries data were filtered using a Chebyshev II 

low-pass digital filter with a cutoff frequency of 500 Hz. The analysis of these 

responses underscores the inherent complexity of damage identification, 

demonstrated by the subtle variations in the acceleration signals induced by the 

damage. 

  
(a) (b) 

Figure 7. Acceleration response in the wagon considering different damage scenarios: 

(a) Car body and (b) front wheelset of the 1st wagon 

4 Results and discussion 

Figure 8 presents the results of applying the methodology outlined in Section 2 to 

various simulation data sets. Red diamonds represent different damage scenarios, 

arranged in increasing order of severity. Train passes numbered above 146 

correspond to scenarios with progressively more severe simulated damage. The 

figure demonstrates the proposed methodology's effectiveness in detecting damage, 

even in its earliest stages. The logarithmic scale on the vertical axis underscores the 

exceptionally high sensitivity of the methodology, since the damage scenarios can 

present DIs more than 3 orders of magnitude above the baseline cases. Additionally, 

a clear distinction can be observed between the damage scenarios associated with 
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the truss diagonal (secondary damage) and the lower chord (main damage). This 

demonstrates that the proposed methodology is sensitive to damage severity. 

However, further refinement is necessary for accurately classifying the severity of 

damage at the same location. 

 
Figure 8. Damage detection on the warren truss bridge 

5 Conclusions 

This paper presents an innovative AI-driven methodology for unsupervised damage 

detection on a Warren truss bridge. Initially, acceleration data from 8 points on a 

LAAGRSS-type freight wagon were used to calculate wavelet scattering 

coefficients. These coefficients, associated with a baseline condition, were employed 

to train autoencoders for reconstruction, with the absolute reconstruction error 

serving as a damage-sensitive feature. To account for environmental and operational 

influences, high-variability components were excluded through normalization. A 

three-level data fusion based on the Mahalanobis distance was then applied to create 

a highly sensitive damage indicator. This indicator enabled accurate detection of all 

damage scenarios, including those in very early stages, without any 

misclassification, demonstrating the effectiveness of the proposed methodology. In 

future work, the authors plan to experimentally validate the methodology and 

enhance its capabilities for assessing damage severity. 
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