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Abstract 
 

With the rapid development of urban rail transit, installing multiple wayside energy 

storage systems for regenerative braking energy recovery has become a hotspot. This 

paper analyses the energy flow in urban rail transit installing multiple energy storage 

systems in both short-time and long-time scales. Furthermore, a coordinated control 

strategy of multiple energy storage systems based on fuzzy logic algorithm is 

proposed to realize the adaptive adjustment of charging/discharging thresholds 

according to the traction network voltage and ESS operation state. Finally, a case 

study is conducted to verify the effectiveness of the proposed coordinated control 

strategy. 
 

Keywords: urban rail transit, regenerative braking energy recovery, multiple energy 

storage systems, fuzzy control, energy management strategy, energy flow 
 

1  Introduction 
 

Energy storage technology plays a crucial role in urban rail transit. The energy storage 

system stores the regenerative energy generated during train braking for future use 

during train traction, thereby reducing energy waste. In addition, it also supports 

energy backup in emergency situations, enabling emergency rescue and enhancing 

system stability and reliability. Therefore, energy storage technology not only 

enhances the economy and environmental friendliness of rail transit but also provides 

critical support for sustainable operation of modern urban rail systems. Installing 

multiple energy storage devices on a rail transit line brings significant benefits. Firstly, 
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it can enhance the overall energy recovery rate of the line. When a train brakes, 

multiple energy storage devices can recover energy simultaneously at different 

stations, reducing energy losses on braking resistors. By coordinating control between 

multiple energy storage devices, the capacity of energy storage configuration can be 

reduced, achieving better recovery of regenerated braking energy. 
 

A significant amount of literature has been devoted to studying control strategies 

for supercapacitor energy storage systems. References [1,2] dynamically adjust the 

discharge commands based on the variation of the no-load voltage to maintain a 

constant energy output ratio between the energy storage device and the rectifier unit, 

ensuring that the energy released during discharge does not fluctuate with the variation 

of the open-circuit voltage. Some literature adopts intelligent algorithms to optimize 

energy management strategies. Reference [3] proposes a novel optimization method 

that combines genetic algorithms with a simulation platform for urban rail power 

supply systems, enabling simultaneous optimization of the optimal energy 

management strategy, location, and scale. Reference [4] proposed a regenerative 

energy prediction method based on the BP neural network model to determine 

whether the energy storage system will be fully charged during the charging process. 

In cases where the energy storage system cannot fully absorb the regenerative energy, 

appropriately raising the charging threshold and reducing the output energy of the 

substation can achieve certain energy-saving effects. Reference [5] proposed a mixed 

energy storage system operation optimization strategy based on dynamic 

programming. However, due to the real-time changes in the traction power supply 

system's topology as the train moves, dynamic programming cannot achieve online 

optimal control. Reference [6], based on an analysis of the train's operating status, 

proposed a braking voltage-following energy management strategy to adjust the 

charging and discharging threshold voltages, thereby maximizing the utilization of the 

energy storage system. Based on similar principles, Reference [7] proposed an energy 

storage device control strategy that considers the train's operating status. This control 

strategy dynamically adjusts the charging voltage command of the energy storage 

device based on real-time train power and position data, keeping the train in a state 

where the braking resistance is not activated, ensuring that the energy storage device 

operates in an optimal state. Reference [8] takes into account the changes in no-load 

voltage and departure interval and proposes an adaptive energy management strategy 

based on fuzzy rule control for hybrid energy storage systems, which improves energy 

efficiency and voltage stabilization. Reference [9], based on a model of urban rail dual 

supercapacitor energy storage systems, aims to minimize line loss between two 

stations as the objective function and uses grasshopper algorithm to optimize the 

energy management parameters of the supercapacitor energy storage system. 

Compared with the particle swarm optimization algorithm (PSO), line loss is 

significantly reduced, achieving energy-saving effects. However, although the above 

references may consider multiple energy storage systems during modeling and 

simulation, coordination between multiple energy storage systems is not considered 

in the control of energy storage charging and discharging. Currently, some literature 

has proposed multi-energy storage control strategies. References [10,11] propose a 

multi-agent deep reinforcement learning-based coordinated control strategy for 
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multiple energy storage systems. This method represents the decision-making process 

of multiple ESS agents as a fully cooperative Markov game. Compared with 

traditional GA optimization algorithms, the energy-saving effect is improved. 

However, the above methods rely on objective functions and optimization algorithms, 

requiring a large amount of real-time substation information, energy storage 

information, and train information. They have high communication requirements and 

are difficult to implement in practical engineering 
 

In this paper, the energy flow characteristics of multi-energy storage systems are 

analysed firstly, which indicates the advantages of coordinated charging and 

discharging of multiple energy storage systems. Furthermore, a multi-energy storage 

coordinated energy management strategy based on fuzzy logic control is proposed and 

simulated to verify its effectiveness. 
 

2  Energy Flow Analysis of Urban Rail Transit with Multiple ESSs 
 

This section analyses the energy flow in urban rail transit when the regenerative 

braking energy of a train is recovered by multiple ESSs. The system studied in this 

paper contains five substations with two ESSs installed at substation 2 and 4 

respectively, as depicted in Figure 1. The distance between substations is shown in 

Table 1. 
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Figure 1: Schematic diagram of urban rail transit. 

 

 

L1/km 1.86 

L2/km 1.7 

L3/km 1.64 

L4/km 1.41 

L1/km 1.86 

L2/km 1.7 

L3/km 1.64 

Table 1: The distance between substations. 
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2.1   Energy flow in short-time scale 
 

We take the scenario as an example where a train brakes at a distance of 1km from 

substation 2 with a braking power of 2MW. The corresponding equivalent circuit 

model of the system at this moment is illustrated in Figure 2. The related parameters 

of substations are shown in Table 2. The unit line resistance is 0.0429Ω/km. By 

multiplying it with the distances between stations shown in Table 1, we can obtain the 

line resistance r1~r4. 
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Figure 2: Equivalent circuit model of urban rail transit. 

 

Us1/V 830 rs1/Ω 0.0119 

Us2/V 822 rs2/Ω 0.0119 

Us3/V 833 rs3/Ω 0.0149 

Us4/V 859 rs4/Ω 0.0149 

Us5/V 867 rs5/Ω 0.0119 

Table 2: Parameters of substations. 

(1) Regenerative braking energy recovery by single ESS 

Assuming that all the regenerative braking energy of the train is absorbed by ESS1 

which is closer to the train, it is obvious that the larger the braking current absorbed 

by ESS, the greater the voltage drop in the line. When Equation (1) is satisfied, 

substation 1 begins to output power and when Equation (2) is satisfied, substation 2 

begins to output power. Pt1 denotes the regenerative power absorbed by the traction 

power supply system located on the left side of the train. Therefore, it is very likely 

to occur that the regenerative braking energy recovered by energy storage system 

partially comes from substations. 
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The status of left substations is shown in Table 3, where 1 represents the substation 

on and 0 represents the substation off. Therefore, if the braking power is 2MW and 
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all absorbed by ESS1, both substation 1 and substation 2 will output power. By solving 

the node voltage equations, we can obtain the energy flow in traction power supply 

system, as shown in Figure 3. ESS1 needs to provide 3.18MW to fully absorb the 

2MW train braking power. Specifically, the 3.18MW charging power of ESS1 not 

only includes the train's braking power but also includes the output power of 

substation 1 (0.236MW) and substation 2 (1.164MW). The output power of 

substations not only increases their energy consumption but also occupies the capacity 

of ESSs. 

 

scenario substation 1 substation 2 

Pt1<1.47MW 0 0 

1.47MW<Pt1<1.64MW 1 0 

Pt1<1.64MW 1 1 

Table 3: Status of left substations. 
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Figure 3: Energy flow in urban rail transit. 

(2) Regenerative braking energy recovery by dual ESSs 

Assuming that the regenerative braking energy of the train is absorbed by both 

ESS1 and ESS2, ESS1 on the left is limited by its own maximum power and can only 

provide a charging power of 1.5MW, i.e., Pchar=1.5MW. Taking into account the line 

losses and the output power of substation 1, the power balance equation at this time is 

shown in Equation (3). Therefore, we can obtain that the regenerative braking power 

absorbed by the left part Pt1 is 1.59MW. Therefore, the remaining 0.41MW needs to 

be absorbed by ESS2 on the right side. 

2

1 1 21 2 1

21 1 2
1 21 2

1 1

       ( )

char t t ss sub

t s ss
t ss

t s

P P I r u I

P U u
P r u

u r r

= − + 

−
= −  + 

+

                               (3) 

When the braking power of the train flows to the right, substation 3 starts to output 

power if Equation (4) is satisfied, substation 4 starts to output power if Equation (5) 

is satisfied, and substation 5 starts to output power if Equation (6) satisfied. Pt2 denotes 

the regenerative power absorbed by the traction power supply system located on the 

right side of the train. 



 

6 

 

2
22 3

t
t s

t

P
u r U

u
−  

                                                      (4) 

( )2
22 3 4

t
t s

t

P
u r r U

u
−  +                                                    (5) 

( )2
22 3 5

t
t s

t

P
u r r U

u
−  +                                                    (6)

 

 

The status of right substations is shown in Table 4. Therefore, when the remaining 

0.41 MW of train braking power needs to be absorbed by ESS2, substation 4 and 

substation 5 will output power at the same time. According to the nodal voltage 

equation, we can obtain the energy flow of the traction power supply system, as shown 

in Figure 4. The charging power of ESS1 is 1.5 MW, the charging power of ESS2 is 

0.82 MW, the output power of substation 1 is 0.05 MW, the output power of substation 

4 is 0.28 MW, and the output power of substation 5 is 0.15 MW. Compared with the 

above case where ESS1 needs 3.81MW to recover the 2MW regenerative braking 

power of the train, in this case ESS1 and ESS2 only need to provide a total power of 

2.32 MW for regenerative braking energy recovery. This not only helps to reduce the 

investment cost of ESSs, but contributes to the reduction of energy consumption of 

substations. 

 

 

scenario substation3 substation4 substation5 

Pt2<0.3MW 0 0 0 

0.3MW<Pt2<0.36MW 0 0 1 

0.36MW<Pt2<2.02MW 0 1 1 

Pt2>2.02MW 1 1 1 

Table 4: Status of left substations. 
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Figure 4: Energy flow in urban rail transit. 
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2.2   Energy flow in long time scale 
 

In this section we will analyse the effect of coordinated control of ESSs in long 

time scale. The power and speed profile of the train from substation 1 to substation 5 

are shown in Figure 5. The charging and discharging threshold for ESS1 are set as 

840V and 820V and the charging and discharging threshold for ESS2 are set as 860V 

and 840V. The range of state of energy (SOE) for ESSs is set to be 0.2~0.9. The 

simulation duration is 20min with a headway of 2min. The corresponding SOE of two 

ESSs during this period is shown in Fig 6. 

 

 
(a)                                                       (b) 

Figure 5: Speed and power profile of the train. 
 
 

 

 
Figure 6: SOE of ESS1 and ESS2. 

 

 

Taking the time interval of 600s~720s as an example, the comparison between the 

actual power output and the power command of the two ESSs is shown in Figure 7. 

The overlapping parts indicate that ESS can meet the power command, while the non-

overlapping parts occur when the actual power output of ESS cannot satisfy the power 

demand due to constraints on its power or energy. It can be observed that during 

655s~672s, ESS1 cannot meet the discharging power requirement because it is in a 

low state of charge at this time. Similarly, ESS2 cannot meet the charging power 
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requirement during 705s~720s due to its high state of charge. Therefore, it is 

necessary to adjust the charging and discharging thresholds of ESSs flexibly. 

 

 

 

 
Figure 7: Power output of ESS1 and ESS2. 

 

 

 

 

3  Coordinated control of multiple ESSs based on fuzzy logic 

algorithm 
 

According to the energy flow analysis in the previous section, coordinated charge and 

discharge of multiple ESSs can help to recover more regenerative braking energy. 

Therefore, this paper proposes coordinated control of multiple ESSs based on fuzzy 

logic algorithm to realize the adaptive adjustment of charging/discharging thresholds 

according to the traction network voltage and ESS operation state. 

 

3.1   Energy flow in long time scale 

 

A hierarchical energy management framework is proposed in this paper for 

coordinated control of ESSs, as shown in Figure 8. The main responsibility of central 

level EMS is to issue appropriate dynamic threshold commands based on SOE of 

ESSs and traction network voltage Red uploaded from each substation. The station 

level EMS is responsible for calculating the SOE and Red uploaded to central level, 

setting the current charging and discharging thresholds according to the 

environmental changes and the central level commands, and controlling the operation 

mode switching and regulating the power output of ESSs. 
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Figure 8: Hierarchical energy management framework. 

 

The calculation of SOE and Red is shown in Equation (7) and (8), where Uess 

denotes the current voltage of ESS, Uess,max denotes the maximum voltage of ESS, Udc 

denotes the traction network voltage, Uchar0 and Udis0 denote the original charging and 

discharging threshold of ESS. 

2

2

,max

ess

ess

U
SOE

U
=                                                  (7) 

dc char0 dc char0

dc dis0 dc dis0

,Red

,Red

U U U U

U U U U

 = −


 = −
                                    (8) 

The adjusted charging and discharging threshold of ESS is shown in Equation (9), 

which adds the dynamic threshold adjustment Δu to the original threshold. So next we 

aim to get an optimal Δu by applying fuzzy logic algorithm. 
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char char0

dis dis0

U U u

U U u

= + 


= + 
                                            (9) 

3.2  Design of affinity function 
 

The inputs to the fuzzy logic algorithm includes SOE of ESSs and traction network 

voltage information Red. For SOE, the logic languages "VS, M, VB" are used to 

represent their states as "very small, medium, very large" respectively, as shown in 

Figure 9(a). "NB, NS, O, PS, PB" is used to represent the state of "negative big, 

negative small, zero, positive small, positive big" for RED, as shown in Figure 9(b). 

The outputs Δu also use the logic language NB, NS, O, PS, PB to describe their states, 

as shown in Figure 9(c). 
 

 

(a) 

 

(b) 

 

(c) 

Figure 9: Affinity function. 

 

3.3  Design of fuzzy rule 
 

Under the control mode of voltage outer loop and current inner loop, the traction 

network voltage can be stabilized at the charging and discharging thresholds if ESS is 

not constrained by its energy, power, response speed, and so on. When the traction 

network voltage at a certain substation is higher or lower than the charging and 



 

11 

 

discharging thresholds, it means that ESS at this substation needs to be coordinated 

with ESS at other stations. The fuzzy rule for coordinated control of ESSs is given in 

Table 5. 

 

 
 

 SOE2               

Red1           
VS M VB 

coordinated discharging 
NB PS PM PB 

NS O PS PM 

independent operation O O O O 

coordinated discharging 
PS NM NS O 

PB NB NM NS 

 

Table 5: Fuzzy rule for coordinated control of ESSs. 

 

 

(1) Coordinated discharging of ESSs 

When the traction network at the substation where ESS1 is located is lower than 

the discharge threshold, ESS2 needs to increase the charge and discharge threshold to 

assist discharge. The larger the difference between the voltage and the discharge 

threshold of the traction network where ESS1 is located, the more the corresponding 

threshold of ESS2 increases. At the same time, the larger the current SOE of ESS2, 

the larger the remaining discharge power and energy, and the higher the corresponding 

threshold of ESS2. 

(2) Coordinated charging of ESSs 

When the traction network voltage of the substation where ESS1 is located is 

higher than the charging threshold, ESS2 needs to lower the charging and discharging 

threshold to assist in charging. The greater the difference between the traction network 

voltage and the charging threshold at the substation where ESS1 is located, the more 

the threshold value corresponding to ESS2 is reduced. In addition, the smaller the 

current SOE of ESS2, the larger the remaining charging capacity, and the lower the 

threshold of ESS2. 

 

 

3.4  Case study 

Applying the above coordinated control strategy to the scenario described in 

Section 2.2, we can obtain the adjusted charging/discharging thresholds of ESSs, as 

shown in Figure 10. The discharge threshold of ESS2 is increased within 640~660s to 

assist ESS1 discharge. What’s more, the charging threshold of ESS1 is lowered within 

690~700s for coordinated charging of ESS2. The corresponding SOE change curve is 

shown in Figure 11. 
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Figure 10: Comparison of charging/discharging thresholds of ESSs. 

 

 
Figure 11: Comparison of SOE of ESSs. 

 

4  Conclusions and Contributions 
 

This paper proposed coordinated control of multiple energy storage systems based on 

fuzzy logic algorithm. It can realize the adaptive adjustment of charging/discharging 

thresholds of ESSs according to the traction network voltage and ESS operation state. 

A case study indicates that it not only can help to reduce the investment cost of energy 

storage systems, but also contributes to reducing the energy consumption of 

substations. 
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