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Abstract

This paper explores energy harvesting from vibrations induced by train passages in
High-Speed railway bridges using magnetoelastic material (MsM). This research pro-
poses an analytical approach derived from a variational formulation to obtain the gov-
erning equations of MsM. Moreover, an optimal design procedure is considered to
produce the maximum power. Finally, the proposed model is verified in a case study
using experimental records of a railway bridge under operating conditions. The con-
clusions drawn from the experimental case study show that the harvested energy in
the train passage could be E=5.28 mJ. The results of this analysis could be helpful for
low power consumption devices, nodes, and sensors of monitoring systems in remote
areas, and also for the development of harvesters as direct structural health monitoring
devices.
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1 Introduction

In recent years, the successful implementation of IoT for real-time Structural Health
Monitoring (SHM) in buildings and civil engineering infrastructures has supported ad-
vances in predictive maintenance strategies. These innovations enable the assessment
of rail system serviceability conditions without disrupting traffic and at reduced costs.
Despite these achievements, one of the most limiting factors in the implementation of
these monitoring systems is the need for a reliable power supply. Lack of access and
maintenance operations in remote areas can limit their practical implementation [1].

To address the power supply challenge, an alternative approach involves energy
harvesting from ambient vibrations, providing a sustainable solution for sensors and
nodes in monitoring systems. Electromagnetic, electrostatic, and piezoelectric en-
ergy harvesting methods are commonly used to convert vibration energy into elec-
tricity. Although piezoelectric mechanisms are widely used due to their compatibility
with Micro-Electro-Mechanical Systems (MEMS), they come with certain limitations,
such as ageing, depolarisation, and brittleness [2]. This paper studies energy harvest-
ing from vibrations induced by train passages in railway bridges using magnetoelas-
tic material (MsM). Magnetoelastic materials take advantage of the Villari effect to
generate energy from vibrations, inducing a change in material magnetisation upon
deformation. This change is harnessed to produce electrical energy through Faraday’s
law in a pick-up coil.

This research presents an approach derived from a variational formulation to obtain
the governing equations of magnetoelastic energy harvesting systems. The harvester
configuration is a unimorph cantilever beam with a tip mass. An optimal design pro-
cedure is considered to maximise the output power. Finally, the proposed model is
verified in a case study using experimental records of a railway bridge under operat-
ing conditions.

2 Formulation and analysis approach

The proposed approach considers an energy harvesting device attached to the bridge at
the coordinate xb (see Figure 1). This device is subjected to the vertical vibrations of
the bridge, denoted as zb(xb, t), induced by the railway traffic. The dynamic behaviour
of the device is described by a coupled magnetoelastic-mechanical model. The energy
harvester comprises a unimorph cantilever beam with a tip mass Mt (see Figure 1).
The system includes a perfectly attached magnetostrictive patch to the substructure
and a pick-up coil, and is connected to an electrical load. The dimensions of the beam
are length Ls, width bs and thickness hs, while the dimensions of the magnetoelastic
plate are length Lp, width bp and thickness hp. The properties of the substructure
material are defined by Young’s modulus Es and the mass density ρs.

The unimorph beam has two different sections: i) the part with MsM given by the
longitudinal coordinate x ≤ Lp; and ii) the remaining part of the substructure defined
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Figure 1: Scheme of bridge/harvester system [3].

by Lp ≤ x ≤ Ls. The following dimensionless parameters relate the geometry, mass,
and bending stiffness of both parts:

β =
Lp

Ls

, γ =
EI

EsIs
, τ =

m

ρshsbs
(1)

where EsIs and ρshsbs are the bending stiffness and mass per unit length of the sub-
structure; and EI and m are the equivalent bending stiffness and mass per unit length
of the beam section with MsM. Hence, β, γ and τ relate the length, bending stiffness,
and mass per unit length of the section with MsM to the substructure, respectively,
and are bounded to β ≤ 1, γ > 1 and τ > 1.

The constitutive equations of the MsM are [4]:{
T
B

}
=

[
cH −e
e µS

]{
S
H

}
(2)

Where T is the stress vector, B is the magnetic flux density vector, S is the elastic
strain vector, H is the magnetic field intensity vector, cH is the elastic stiffness matrix
evaluated in a constant magnetic field, e is the magnetomechanical coefficient, and µ
is the absolute permeability at constant strain.

According to the Euler-Bernoulli assumptions, the shear deformation and rotary
inertia of the unimorph beam may be neglected. The vertical displacement of the tip
mass produces longitudinal stress in the MsM patch. The axial strain and magnetisa-
tion are assumed both in the longitudinal direction 3, and therefore the device operates
in the 33 mode. Then Equations (2) can be reduced to the following:

T3(x, z, t) = cH33S3(x, z, t)− e33H3(x, z, t) (3)

B3(x, z, t) = e33S3(x, z, t) + µS
33H3(x, z, t) (4)

where the elastic stiffness component cH33 represents the Young’s modulus of the MsM,
e33 is the magnetomechanical constant, µS

33 is the absolute permeability at constant
strain, z is the vertical coordinate of the beam section and t stands for the time.

The coupled magnetomechanical behaviour of the bimorph beam is described by
the governing equations (3) and (4). Magnetisation H3(t) is expressed by Ampère’s
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law with the assumption of a long and thin solenoid coil:

H3(t) =
Ni(t)

Lp

(5)

where N is the number of turns of the pick-up coil and i(t) is the induced electric
current. It is assumed that the magnetic field intensity does not depend on the longitu-
dinal coordinate x, and the patches are thin enough to neglect their contribution to the
bending stiffness.

Furthermore, the axial deformation in the MsM patch S3 is due to bending and is
defined according to the Euler-Bernoulli assumption:

S3(x, z, t) = −z∂
2w(x, t)

∂x2
(6)

Similarly, the longitudinal deformation in the substructure becomes εx = −z∂2w/∂x2.
The equilibrium equation of the cantilever beam subjected to base excitation is [3]:

∂2M(x, t)

∂x2
+m(x)

∂2w(x, t)

∂t2
= − [m(x) +Mtδ(x− Ls)]

∂2zb(xb, t)

∂t2
(7)

where δ(x) is the Dirac delta function and m(x) represents the mass per unit length of
the beam. The mass per unit length is m(x) = ρshsbs (Lp ≤ x ≤ Ls), while the mass
of the beam section with MsM is defined by the parameter τ according to Equation (1)
as m(x) = τρshsbs (0 ≤ x ≤ Lp). The mass Mt is assumed to be a point mass. The
effect of viscous damping has been omitted in the equilibrium equation for simplicity,
and will be later introduced in the governing equation in the following section.

The bending moment of the beam section with MsM is given by:

M(x, t) = −bp
[∫ hs−hc

−hc

zσx(x, z, t) dz +

∫ hs+hp−hc

hs−hc

zT3(x, z, t) dz

]
, 0 ≤ x ≤ Lp

(8)

where σx represents the longitudinal stress in the substructure (σx = Esεx), and hc is
the distance from the bottom of the substructure to the neutral axis. The expression of
the bending moment is further elaborated according to Equations (3) and (6) as:

M(x, t) = bp

[∫ hs−hc

−hc

z2Es
∂2w(x, t)

∂x2
dz+∫ hs+hp−hc

hs−hc

(
z2cH33

∂2w(x, t)

∂x2
+ ze33H3(x, z, t)

)
dz

] (9)

Thus, the bending moment is obtained after integration:

M(x, t) = γEsIs
∂2w(x, t)

∂x2
+
Ne33hpcbphp

Lp

i(t), 0 ≤ x ≤ Lp (10)
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where hpc = (2hs+hp−2hc)/2 is the distance from the neutral axis of the beam to the
centre line of the magnetoelastic patch. The parameter γ relates the bending stiffness
of the beam section with the MsM to the bending stiffness of the substructure:

γ =
h4s + 2hphs

(
2h2p + 3hphs + 2h2s

)
n+ h4pn

2

h3s (hs + hpn)
(11)

where n = cH33/Es.
The bending moment of the substructure isM(x, t) = EsIs∂

2w(x, t)/∂x2, Lp ≤
x ≤ Ls.

2.1 Governing equations

The equation of motion of the unimorph beam is derived from Hamilton’s principle,
expressing the kinetic energy Ek, the potential energy Ep, and the virtual work δW
performed by the base excitation in terms of the generalised coordinate q(t). The
beam deflection is approximated by:

w(x, t) = q(t)ψ(x) (12)

where the generalised coordinate q(t) represents the tip displacement and ψ(x) is a di-
mensionless shape function that satisfies the boundary conditions. Then, the Lagrange
equation of motion is written as follows:

d

dt

(
∂Ek

∂q̇

)
− ∂Ek

∂q
+
∂Ep

∂q
= Q (13)

where the virtual work is expressed as δW = Qδq.
The dimensionless shape function ψ(x) can be estimated from the static equilib-

rium (Equation (7)) of a beam under a unit tip load. Clamped boundary condition at
the fixed end and compatibility of displacement and rotation at x = Lp are impossed.

The constitutive equations (3) and (4) expressed in the generalised coordinates are
obtained by combining Equations (6) and (12):

T3(x, z, t) = −cH33z
∂2ψ(x)

∂x2
q(t)− Ne33

Lp

i(t) (14)

B3(x, z, t) = −e33z
∂2ψ(x)

∂x2
q(t) +

NµS
33

Lp

i(t) (15)

The kinetic energy Ek, the strain energy Ed and the magnetic energy Em are defined
as:
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Ek =
1

2

[∫
Ωs

ρsẇ(x, t)ẇ(x, t) dΩ +

∫
Ωp

ρpẇ(x, t)ẇ(x, t) dΩ +Mtẇ(Ls, t)
2

]
(16)

Ed =
1

2

[∫
Ωp

T3(x, z, t)S3(x, z, t) dΩ +

∫
Ωs

σx(x, z, t)εx(x, z, t) dΩ

]
(17)

Em = −1

2

∫
Ωp

B3(x, z, t)H3(x, z, t) dΩ (18)

Then, the potential energy is calculated from the strain and magnetic energies as:

Ep = Ed + Em (19)

The virtual work of the external forces δWext = Qδq is expressed in terms of effective
mass as δWext = −Meff z̈(xb, t)δq.

Finally, the Lagrange equation of motion (Equation (13)) becomes:

Meq q̈(t) +Keqq(t) +Gi(t) = −Meff z̈b(xb, t) (20)

where the equivalent mass and stiffness, Meq and Keq, the effective mass Meff and
the magnetomechanical coupling coefficient G are given by:

Meq =

∫ Lp

0

τρshsbsψ(x)
2 dx+

∫ Ls

Lp

ρshsbsψ(x)
2 dx+Mt (21)

Meff =

∫ Lp

0

τρshsbsψ(x) dx+

∫ Ls

Lp

ρshsbsψ(x) dx+Mt (22)

Keq =

∫ Lp

0

γEsIs

(
∂2ψ(x)

∂x2

)2

dx+

∫ Ls

Lp

EsIs

(
∂2ψ(x)

∂x2

)2

dx (23)

G =

∫ Lp

0

Ne33hpcAm

Lp

∂2ψ(x)

∂x2
dx (24)

with Am = hpbp the area of the MsM.
The Villari effect relates changes in the material magnetisation due to the strain.

The magnetic field induces a voltage v(t) in a pick-up coil according to Faraday’s law.
Thus, the voltage is obtained according to Equation (15) from:

dv(t)

dx
dx =

d

dx

(
−N d

dt

∫
Am

B3(x, z, t) dA

)
dx (25)

Substituting Equation (15) into Equation (25) and integrating, the voltage across the
coil becomes:

v(t) =
Nhpbpe33hpc

Lp

∫ Lp

0

∂2ψ(x)

∂x2
dxq̇(t)− N2hpbpµ

S
33

Lp

i̇(t) (26)
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Moreover, the following expression is derived considering the magnetomechanical
coupling coefficient (Equation 24) and the internal resistance of the coil NRc (Rc is
the resistance of one turn):

v(t) = Gq̇(t)− Li̇(t)−NRci(t) (27)

where L is the equivalent inductance of the coil:

L =
N2µS

33Am

Lp

(28)

The system is connected to a load resistance Rl to estimate the electrical energy gen-
erated by the harvester. Then, the coupled electromechanical governing equation is
obtained from Equation (27) considering that the voltage across the load resistance
equals the induced voltage. Thus, the voltage can be expressed as v(t) = Rli(t) and
the coupled electromechanical governing equation is:

Gq̇(t)− Li̇(t)−NRci(t)−Rli(t) = 0 (29)

Furthermore, an equivalent damping is considered in the system. The damping is in-
troduced in Equation (20) to represent the dissipation of mechanical energy due to
the viscous effects of the harvester. The equivalent damping is defined by the damp-
ing coefficient Ceq = 2ζωMeq where ζ represents the mechanical damping ratio and
ω =

√
Keq/Meq is the natural frequency of the device. Consequently, the governing

equations of the problem are derived from equations (20) and (29) considering the
effect of the equivalent damping and dividing by the equivalent mass of the system:

q̈(t) + 2ζωq̇(t) + ω2q(t) +
G

Meq

i(t) = −Meff

Meq

z̈b(xb, t) (30)

Li̇(t) + (Rl +NRc)i(t)−Gq̇(t) = 0 (31)

The governing equations represent the magnetoelectromechanical behaviour of the
simplified lumped mass model in Figure 2. The lumped-parameter model is repre-
sented by the generalised coordinate q(t) and the electric current i(t). The coupling
terms in Equations (30) and (31) represent an equivalent gyrator that relates the time
derivative of the generalised coordinate to the electric current. The magnetomechani-
cal coefficient G can be considered as the gyration resistance.

The governing equations can be evaluated in terms of amplitude and phase, assum-
ing a harmonic base excitation of the form zb(xb, t) = z0(xb, ω) exp(ιωt):

(−ω2 + 2ιωζω + ω2)q0(ω) +
G

Meq

i0(ω) =
Meff

Meq

ω2z0(xb, ω) (32)

(ιωL+NRc +Rl) i0(ω)− ιωGq0(ω) = 0 (33)

where ω is the frequency of excitation and the imaginary unit number is denoted by
the Greek letter ι to avoid confusion with the induced current. The solution of the
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Figure 2: Lumped-parameter model of a magnetoelastic energy harvester.

previous equations allows us to calculate the amplitudes of displacement and voltage:

q0(ω) =
Meffω

2z0(xb, ω)/Meq

2ιωζω + ω2 − ω2 + ιωG2/ (Meq (ιωL+ (Rl +NRc)))
(34)

i0(ω) =
ιωGq0(ω)

(ιωL+ (Rl +NRc))
(35)

Equations (34) and (35) provide the response of the energy harverster under the base
excitation z0 acting at the frequency ω.

The derivation of the former expressions is based on the parameters β, γ and τ that
relate the geometry and mechanical properties of the beam section with MsM to the
substructure. These parameters facilitate the optimal harvester tuning procedure in the
following sections.

2.2 Optimal design procedure

The performance of the device is limited to a narrow band around the resonance fre-
quency, and then the power is drastically reduced if the excitation frequency deviates
from resonance. The procedure for adjusting the resonant frequency of the harvester
to the fundamental mode shape of the bridge follows the strategy described in [3].

The methodology adopted consists of: i) the harvester tuning frequency is set to
the optimum tuning frequency of the bridge ωt [5]; and ii) the damping coefficient
Ceq is the same regardless of the bridge to which the harvester is tuned, allowing a
comparable analysis of the collected energy [6]. The last condition is satisfied by
defining the design parameter r = KeqMeq. All the above and the parameter γ allow
determining the thickness and length of the substructure, hs and Ls, and the tip mass
Mt to adjust the harvester to the fundamental frequency of the bridge. Moreover, the
proposed methodology considers the electric resistance and the number of turns of the
pick-up coil to optimise the power generated P (ω).
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The tuning procedure optimise the power dissipated by the load resistance under
resonant conditions setting ω = ωt. The maximum amplitude of the harmonic base
excitation is limited to z̈0(ω) = 3.5m/s2, which corresponds to the maximum accel-
eration level allowed on ballast railway bridges [7]. The harvester must withstand the
stress in the substructure under this load, ensuring σx(x) ≤ σy, where σy is the yield
stress or the tensile strength. Several analyses have shown that the cross section in
which the maximum stress is reached is found at x = Lp (β ≤ 1), which is located in
the section of the substructure without MsM closest to the fixed end.

Additive manufacturing is selected for the substructure. The printing volume of
a 3D printer limits the maximum length of the substructure. The maximum length
of the substructure is constrained to Ls,max = 0.3m, which would be valid for most
commercial 3D printers.

Then, the optimisation problem is defined as follows:

maximise
r,γ,N,Rc

|P (ωt)|

subject to σx(Lp) ≤ σy, Ls ≤ Ls,max

The optimal solution is obtained using a genetic algorithm that starts to tune random
individuals given by r, γ, N and Rc to the fundamental frequency of the bridge. Then,
the optimal load resistance is calculated at the resonance frequency of the system, and
the output power is evaluated if the constraints of the problem are satisfied. This pro-
cess is repeated in subsequent generations to find the optimal design of the harvester.

3 Case study

In this section, energy harvesting on a High-Speed railway bridge is analysed us-
ing experimental records. In July and September 2022, the authors performed an
experimental program on a HSL bridge crossing the Tirteafuera river including the
identification of the bridge modal parameters and the recording of vibration levels un-
der operational conditions. This bridge was a single simply-supported span concrete
bridge with three tracks (see Figure 3). The deck was composed of a 18m × 20.6m
(length×width) concrete slab resting on ten prestressed concrete girders. The slab
carried two ballasted tracks with UIC gauge (1.435m) for high-speed trains and one
ballasted track with Iberian gauge (1.668m) for conventional traffic.

The tests were carried out in two stages. First, the bridge response due to railway
traffic was measured with a laser vibrometer. This allowed for the identification of the
optimal tuning frequency according to [5]. Next, the proposed procedure was vali-
dated experimentally using a comprehensive experimental campaign consisting of the
measurement of the bridge response from both ambient and forced vibrations. Figure
4 shows the sensors layout on the deck. The results of the second test include the
identification of the bridge modal properties and the energy harvested under operating
conditions.
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Figure 3: HSL bridge under study: general view (38◦43’33.06”N 4◦5’20.05”W).
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Figure 4: Sensor layout.

The results of the experimental program provided an optimal tuning frequency ft =
9.3Hz to which the harvester is designed. This frequency is introduced in the optimal
design procedure detailed in the previous section. The energy harvester consists of
a Metglas2605SC magnetoelastic layer 50mm × 30mm × 0.2mm glued to a PAHT
CF15 substructure. Table 1 shows the results of the optimal design procedure for a
device tuned to ft = 9.3Hz.

Finally, the energy harvested due to a RENFE S102 in duplex configuration travel-
ling on track 3 at 211.4 km/h was estimated from the vibration of the bridge at the point
A23. The bridge acceleration and voltage on the load resistance are shown in Figure 5.
An overall analysis shows that the response is highly amplified and exhibits resonant
behaviour. The energy harvested by the device is estimated to be E = 5.28mJ.
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Table 1: Optimal design parameters

Tuning frequency Ls[mm] hs[mm] Mt[kg] Rl[Ω] N [turns] Rc[Ω]
ft = 9.3Hz 100.3 1.2 0.076 2219.5 1000 0.001

Figure 5: Bridge acceleration and voltage at pointA23 induced by Renfe S102-Duplex
train circulating on track 3 at V = 211.4 km/h.

4 Conclusions

The work presented in this research is within the objectives of developing autonomous
monitoring systems. In this way, it will be possible to reduce maintenance costs and
extend the useful life of the railway infrastructure. The aim of this research is the anal-
ysis of the performance of magnetoelastic energy harvesting on railway bridges. This
research proposes an analytical model that allows an optimal design of a harvester de-
vice for each railway bridge such that maximum power is obtained. The conclusions
drawn from the experimental case study show that the harvested energy in a train pas-
sage over the bridge under study by a device tuned to optimal tuning frequency 9.3Hz
could be E = 5.28mJ. Although the available power is small for a single train, this
energy source can be used in intermittent storage and measurement operations. The
amount of energy can be increased using several harvesters according to the output
required power of a monitoring system. Then, the results of this analysis are expected
to be helpful for energy harvesting applications on railway bridges to feed low power
consumption devices, nodes, and sensors of monitoring systems in remote areas, and
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also for the development of harvesters as direct structural health monitoring devices.
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[3] J.C. Cámara-Molina, E. Moliner, M.D. Martı́nez-Rodrigo, D.P. Connolly,
D. Yurchenko, P. Galvı́n, A. Romero, 3D printed energy harvesters for rail-
way bridges-design optimisation, Mechanical Systems and Signal Processing
190 (2023) 110133.

[4] IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature,
Standard (1990).
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