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Abstract 
 

This paper evaluates human driver performance in obstacle detection on railway 

systems by statistically analysing accident data. Given the challenge of obtaining non-

accident data, the study estimates obstacle frequency on tracks by examining accident 

rates under low visibility conditions (night and curves), where drivers cannot see 

obstacles in time. 

Using data from a major European railway operator, the study finds that 

human drivers can avoid around 28% of collisions in good visibility conditions, 

but only about 12% when all conditions are considered. Autonomous trains need to 

meet at least an equivalent performance level. This research aims to support the safety 

certification of autonomous train systems by offering a benchmark of human 

performance in obstacle detection, emphasising the need for comprehensive data and 

rigorous validation of hypotheses regarding driver reactions and environmental 

conditions. 
 

Keywords: obstacle detection, train driver performance, safety, railways, 

autonomous train, reference system 
 

1 Introduction 
 

In recent years, significant advancements have been made in the development of 

autonomous trains, exemplified by the Digital S-Bahn project in Hamburg, which 
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operates at Grade of Automation 2 (GoA2) [1] or the SNCF Train de Fret Autonome 

project, that reached a GoA4 demo. These advancements are part of a broader effort 

to improve transportation efficiency and reduce greenhouse gas emissions, aligning 

with the objectives of the Paris Agreement to limit global warming to 2 degrees 

Celsius. Transportation is a major contributor to greenhouse gas emissions, 

accounting for 31% of emissions in France as of 2019. Given that trains are among 

the most energy-efficient modes of transport, enhancing the rail network's efficiency 

through increased automation is a crucial strategy for mitigating the environmental 

impact of transportation. 

[2] indicates that the absence of a driver in the cabin is therefore not enough 

to classify a train as autonomous. It is its on-board decision-making capacity that 

makes a train autonomous. Train autonomy is categorised from GoA0 to GoA4, from 

no automation to operation of the train without personnel on board, with obstacle 

detection systems (ODS) being vital above GoA3. Despite the technological 

advancements, the safety certification of fully autonomous trains remains a significant 

hurdle, particularly concerning the ODS. The only close example of a fully 

autonomous certified train is the Rio Tinto train which runs in GoA4 [3]. However, 

this project is very different from mainline and suburban train projects since the Rio 

Tinto train only crosses desertic areas and thus doesn’t need obstacle detection. The 

ODS, which uses sensors such as lidar, radar, and cameras combined with machine 

learning algorithms to detect and classify obstacles, is not yet safety certified, posing 

a major barrier to full autonomy of train running in denser open environments. 

According to the EN50126 standard [4], there are three primary methods to 

demonstrate the safety of an object: explicit risk estimation, reference systems, and 

standard practices. Additionally, other norms like EN50128 [5] for software 

certification, EN50129 [6] for electronics device certification, and UL600 [7] for 

autonomous product safety certification are relevant. Utilising a reference system for 

safety certification necessitates a clear understanding of the system and relevant 

statistics for comparison. Human drivers, who significantly impact obstacle detection, 

serve as the obvious reference system, raising questions about the appropriate 

statistics to use, such as biological parameters (e.g., eye range, reaction time) or 

operational statistics (e.g., human driver accidentology). 

This paper aims to provide operational statistics of human drivers, which can 

be used as a reference in the argumentation for the safety certification of autonomous 

train systems. By analysing railway accidentology data, particularly focusing on curve 

and night scenarios, this study seeks to contribute valuable insights into the 

performance benchmarks necessary for the certification of autonomous train systems. 

The next section provides a comprehensive review of related works, 

establishing the foundation for our analysis. Building on this, Section 3 introduces the 

data used for the study, ensuring clarity on the information sources. In Section 4, we 

formally define the problem, setting the stage for subsequent analysis. The 

methodology described in the annex is then applied in Section 5, enabling us to derive 

results on the distribution of accidents occurring during nights and on curves. 
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Following this, Section 6 addresses the known limitations of our study, providing a 

balanced perspective. Finally, Section 7 concludes the paper, summarising the key 

findings and implications. 

2 Literature review 

The focus of this paper is related to the introduction of an obstacle detection system 

in trains. According to the EN50126 standard [4], there are three methods to 

demonstrate the safety of an object before market release: conducting an explicit risk 

assessment, utilising state-of-the-art practices, and using a reference system. The first 

technique is applicable, unlike the second, as there are currently no established state-

of-the-art practices for obstacle detection systems in trains. The third technique is 

particularly relevant as the obstacle detection system is intended to replace the 

conductor, who can be considered a reference system. 

Many papers on railway accidentology classify accidents based on human 

factors. For instance, the paper "Understanding the Human Factors Contribution to 

Railway Accidents and Incidents in Australia" [8] studies human and external factors 

that have contributed to railway accidents. This study reviewed forty rail safety 

investigation reports and applied the Human Factors Analysis and Classification 

System (HFACS), developed by Dr. Scott Shappell and Dr. Doug Wiegmann [9], to 

identify errors associated with rail accidents and incidents in Australia. The analysis 

revealed that nearly half of the incidents resulted from equipment failures, mostly due 

to inadequate maintenance or monitoring programs. Additionally, slips of attention, 

associated with decreased alertness and physical fatigue, were identified as the most 

common unsafe acts leading to accidents and incidents. The study highlighted the 

significant role of inadequate equipment design and organisational influences in 

contributing to these incidents, suggesting that improvements in resource 

management, organisational climate, and processes are crucial for reducing accidents 

and incidents in the Australian rail system.  

Similarly, "Analysis and Assessment of the Human Factor as a Cause of 

Occurrence of Selected Railway Accidents and Incidents" [10] utilises the HFACS to 

classify human factors in accidentology. This study focuses on analysing and 

assessing the role of human factors in selected railway accidents and incidents. By 

applying the HFACS framework, the authors identify various levels of human error, 

ranging from unsafe acts to organisational influences, providing a comprehensive 

understanding of how human factors contribute to railway accidents. The study 

emphasises the need for improvements in human factor management to enhance 

railway safety. 

Other studies focus on the external causes of railway accidents. The paper 

"Statistical Analysis of the Railway Accidents Causes in Iran" [11] examines the types 

and frequencies of railway accidents, providing insights into the external factors 

contributing to these incidents. By analysing statistical data, it helps identify common 

accident types and potential preventive measures. 
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Our paper aims to propose a statistical study to assess the contribution of 

human conductors in avoiding railway accidents. As opposed to previous studies the 

idea is not to analyse the factors in human performances that could lead to an accident 

but more to analyse if the human driver has an impact on accident rate in operational 

context. That kind of study could be held by an analysis of human perception 

capabilities and braking distance studies. To the best of our knowledge, that specific 

kind of work doesn’t exist, even though some studies compare human performance 

with autonomous obstacle detection systems. For example, "Analysis of Human-

Factor-Caused Freight Train Accidents in the United States" [12] uses human 

detection capabilities (e.g., detecting humans, with or without reflective vests, and 

vehicles) under various conditions (night and day) to benchmark the performance of 

the developed system. The human detection model referenced in this study originates 

from an internal paper by Deutsche Bahn (DB). Additionally, the paper 

"Automatisches Fahren" (DB's Kompass Project) [13] provides a reference for human 

detection range and probability but does not focus on the impact on the overall 

accident rate on the railway network. 

There is a noticeable gap in the literature regarding the safety performance of 

human conductors from a railway network perspective. While existing studies provide 

references for human detection capabilities, they do not address the overall impact of 

human presence on accident rates. Our study aims to fill this gap by statistically 

analysing the contribution of human conductors to accident avoidance, potentially 

leading to a better understanding of their role in enhancing railway safety. This review 

highlights the importance of human factors in railway accident prevention and the 

need for comprehensive studies to evaluate the impact of human conductors on 

railway safety. By introducing a statistical approach and leveraging human perception 

and braking distance studies, our paper seeks to analyse the safety benefits of human 

conductors, contributing to the development of effective obstacle detection systems 

for trains. 

 

 

3 Data presentation  

A railway operator needs safety data in order to analyse the safety of their operations 

and find the weaker areas. Every year many of the European operators produce a 

safety report in which they use that data, like the one from SNCF [14]. Even though 

those reports are interesting in the safety analysis that is needed for an Obstacle 

Detection System (ODS), they tend to be very general and only present the 

conclusions. In order to be more precise, a safety analysis dedicated to ODS has to 

use raw data.  

For this purpose, a primary railway operator provided raw accidentology data. 

It contains a list of every accident since January 2022 in an European region railway 

network. For each accident, the entries that will be used in this study are : Beginning 

time, End time, Line number, Kilometre, Classification, Ressources and Causes. 
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Unfortunately, no description was provided along with this set of data. As a 

consequence we will have our own definitions based on the terms that are used. A full 

list of those definitions can be found in the annexe of this document. 

While all the values are free entries for the people who register the accidents, 

“Classification” is a field which is defined by a limited set of values. Three sets of 

incidents (Animals, Obstacle and Safety) are listed and sub-incidents are listed for 

them :   

 

- Animals : hoist, hit wild animals 

- Obstacle : Personal accident & Level crossing, tree, other, branch in 

the catenary, fall of rock, Collision with a bridge, fire on the outskirts 

or on the way, vehicle on the track 

- Safety : stone throw & projectile shot, voluntary obstacle on the track, 

person on the track or suicidal 

 

As for fields, classification categories don’t have any description, thus we will use our 

own. 

 

 

 

 

4 Probabilistic definition 

The objective of this section is to describe the world of events in a probabilistic way. 

The result will be a probabilistic definition of the problem and the hypotheses, as 

well as the expected result.  

 

 

4.1  Definition of the world of events 

Let us define five events :  

 

I : There is an Incident on the railway (presence of an obstacle that requires a stop) 

R : The driver detects the obstacle and Reacts soon enough to stop the train before the 

obstacle 

A : There is an Accident (collision with the obstacle) 

C : The train is driving in a Curve 

N : The train is driving at Night 

 

nX : The complementary event of X (e.g. nC = The train is not in a curve) 

 

Moreover the set of moments of train runs can be divided in two ways : by the 

curve/straight-line condition and by the night/day condition. 
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Figure 1: divisions of set of moments the train runs 

 

In one of those two divisions, the event R, A and I are structured as such :  

 
Figure 2: description of event inside the set of moment the train runs 

 

At any moment the train runs, whether it’s in a curve or not, at night or not, an 

incident on the railway can happen (I). In those incidents, the driver can react in time 

to brake (R) or not (nR), and when he doesn’t react in time an accident can occur (A). 

According to the DB work mentioned in the introduction, it seems that human 

abilities often don't provide a vision range long enough to brake in time to avoid any 

collision. The goal of this paper is to quantify the impact of human drivers on 

accident rate.  

Let’s define V as the event, “the driver has good visibility conditions”, which 

means the train is not in a curve and not driving at night. 

𝑃(𝑉)  =  𝑃(𝑛𝐶 𝑎𝑛𝑑 𝑛𝑁)       (1a) 

𝑃(𝑛𝑉)  =  𝑃((𝐶 𝑎𝑛𝑑 𝑁) 𝑜𝑟 (𝐶 𝑎𝑛𝑑 𝑛𝑁) 𝑜𝑟 (𝑛𝐶 𝑎𝑛𝑑 𝑁))  (1b) 

4.2  Hypotheses 

The first hypothesis states that the incidents are homogeneously distributed.  

𝑃(𝐼)  =  𝑃(𝐼|𝑉) = 𝑃(𝐼|𝑛𝑉)      (Hypothesis 1) 

The second hypothesis states that the only events that lead to an accident (A) are an 

incident (I) and the late reaction of the driver (nR) :  

 The 
train is 

The is 
not in a 

 

The 
train is 

The 
train is 

 

Set of moment the train 

 
A 
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𝑃(𝐴) = 𝑃(𝐼 ∩ 𝑛𝑅) = 𝑃(𝐼) × 𝑃(𝑛𝑅)   (Hypothesis 2) 

The third hypothesis applies to the drivers’ ability to perceive the obstacles. It’s 

considered that at night and in curves, it’s impossible for the driver to brake before 

the obstacle in time. In curves, the obstacles is obstructed while at night the lights of 

the train don’t enable the driver to see the obstacles more than 100-150m :  

 𝑃(𝑛𝑅|𝑛𝑉)  =  1       (Hypothesis 3) 

 

 

 
 

Figure 3 : Visualisation of the driver’s perception at night and in curves, limited to 

100-150m 

4.3  Probabilistic usage of the results 

The lack of solid numbers regarding human driver’s capability of avoiding accidents 

is due to the difficulty to estimate the frequency of obstacles on tracks. While all 

accidents are well recorded, most of the non-accidents (near-accidents) go 

unrecorded. But to estimate human driver performance both sets of data would be 

needed. 

In this work, we propose a novel approach to infer the frequency of obstacles 

on the track: we make the assumption that in low visibility conditions (e.g. at night 

and in turns), it’s impossible for the driver to brake in time to avoid an accident with 
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the obstacle (Hypothesis 3). Therefore all obstacles in low visibility result in 

accidents, which are recorded. This means that the frequency of obstacles on the 

track is equal to the rate of accidents in low visibility conditions. In other words 

 

P(A|nV) = P(I|nV)       (2)  

Given Hypothesis 1 (homogeneous distribution of Incidents), this can be 

generalised to: 

 

P(I) = P(A|nV)       (3) 

Considering this, P(R|V), the probability of the driver reacting on time in good 

visibility conditions, can now be calculated as follow:  

 

 𝑃(𝑅|𝑉) = 1 − 𝑃(𝑛𝑅|𝑉) = 1 −
𝑃(𝐼)∗𝑃(𝑛𝑅|𝑉)

𝑃(𝐼)
 

 = 1 −
𝑃(𝐼|𝑉)∗𝑃(𝑛𝑅|𝑉)

𝑃(𝐼)
    (applying hypothesis 1) 

 = 1 −
𝑃(𝑛𝑅∩𝐼|𝑉)

𝑃(𝐼)
    (applying hypothesis 2) 

 = 1 −
𝑃(𝐴|𝑉)

𝑃(𝐼)
 

 

Applying P(I)=P(A|nV), we get: 

 

 𝑃(𝑅|𝑉) = 1 −
𝑃(𝐴|𝑉)

𝑃(𝐴|𝑛𝑉)
= 1 −

𝑃(𝐴∩𝑉)/𝑃(𝑉)

𝑃(𝐴∩𝑛𝑉)/𝑃(𝑛𝑉)
= 1 −

𝑃(𝑉|𝐴)∗𝑃(𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)∗𝑃(𝐴)/𝑃(𝑛𝑉)
 

= 1 −
𝑃(𝑉|𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)/𝑃(𝑛𝑉)
 

 

We obtain :  

 

 𝑃(𝑅|𝑉) = 1 −
𝑃(𝑉|𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)/𝑃(𝑛𝑉)
      (4) 

 

 More precisely with this formula the distribution of accidents in good visibility 

is compared to the distribution of good visibility time and distance in the network. 

Given the three hypotheses, the difference of distribution in accidents, the impact of 

drivers on the accident rate will be estimated. 

 

5 Curve and night analysis 

This section aims to determine the difference of distribution of accidents with the 

distribution of curves and nighttime runs. To achieve this, we first calculate the 

proportion of curves and night runs in the studied network to obtain the proportion of 
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conditions where the driver can’t see (P(nV)) and then the proportion of accidents 

occurring in those conditions (P(nV|A)). We use these proportions in the computation 

described in the last section. To compute night runs and curves the methodology 

described in the annex was used. 

5.2 Analysis of the Region’s rail network 

Once the conditions for every accident are determined, we estimate the distribution 

of these conditions in the overall train traffic in the region and during the period of 

the accident dataset. 

We first identify the proportions of curved distance in the lines on which 

accidents happened (in the database). Then, this result is multiplied by the length of 

the line and added to the sum of those results for each line. The sum is divided by 

the total length of the lines studied in order to calculate the proportion of curve on 

all the networks. The formula used is the following :  

 

∑ ⬚⬚
𝑖 𝑐𝑢𝑟𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛(𝑖)∗𝑙𝑖𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ(𝑖)

𝑡𝑜𝑡𝑎𝑙𝐿𝑖𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ
     (5) 

After a visual exam, a threshold of 10 km for the radius of curvature, and 400 

m for the distance between the central point and the two points taken to compute the 

radius of curvature, were chosen in order to conduct the analysis. The results show a 

curve ratio between 22.51% and 73.73% depending on the line. The weighted average 

curve proportion is 39.23%. With the events defined in section III : P(C) = 39.23% . 

As of the night time runs, in order to have a basis of comparison the CEREMA 

(Centre for Studies and Expertise on Risks, the Environment, Mobility and Urban 

Planning) data was used [15]. Those data summarises the number of train.km per hour 

of the day for trains :  
 

 

 
Figure 4 : Distribution of trains through the day on the national network 
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Using those data, the quantity of train.km before sunrise or after sunset is 

calculated for each day of the 2023 year. Then, the proportion of train.km by night is 

computed for the whole 2023 year. The result is a proportion 31.63% of train activity 

at night : P(N) = 31.63%. Let us consider the reasonable hypothesis that the proportion 

of curves travelled by trains is the same for night runs as during the day. It’s then 

possible to compute the distance of train travelled for each condition. For example, 

nights runs in curved lines represent 39.23%*31.61% = 12.41% of the train's running 

conditions. The results for the other conditions are presented in the following table. 

 
 

 Curves (C) Straight lines (nC) 

Night time (N) 12.41% 19.22% 

Day time (nN) 26.82% 41.55% 

Table 2 : Distribution of conditions for running trains 

 

Considering that the only good visibility conditions are during day in straight 

lines we obtain : 

 

 

𝑃(𝑉) = 41.55% 𝑎𝑛𝑑 𝑃(𝑛𝑉) = 58.45%    (6) 

 
 

5.3 Analysis of the accidents 

This part intends to analyse and retrieve the accident distribution in all the conditions 

defined in the last part. Let us define the events :  

 

W = accidents in Night time and Straight line 

X = accidents in Day time and Curved line 

Y = accidents in Day time and Straight line 

Z = accidents in Night time and Curved line 

For each accident those variables represent random variables following the 

Bernoulli law. For example, for the variable X, for one accident the variable takes 1 

as a value if the accident happens during day time in a curved line, 0 either. The 

number of accidents available in the database is 921, unfortunately only 611 accidents 

are usable The remaining 310 are either lacking a kilometre or a line number, or the 

kilometre provided is inconsistent with the line length. We assume that these unusable 

points are equally distributed among the different conditions. The proportion of 

accidents in the different conditions is then computed. 
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Figure 5 : Distribution of accident conditions. 

Consequently, it’s possible to obtain an estimation of the distribution of 

accident conditions.  
 

 

Table 3 : Distribution of the different accident conditions 

Since X, Y, Z and W are Bernouilli random variable and the sample is big 

enough, it’s possible to calculate confidence interval at a level of 95% for each of their 

population proportion p: 

 

𝑝𝑊′ = 22.09%      𝑝𝑊 ∈ [18.80%;  25.38%]    (7) 

𝑝𝑋′ = 28.64%      𝑝𝑋 ∈ [25.06%;  32.22%]    (8) 

𝑝𝑌′ = 33.72%      𝑝𝑌 ∈ [29.97%;  37.47%]    (9) 

𝑝𝑍′ = 15.55%      𝑝𝑍 ∈ [12.68%;  18.42%]    (10) 

Since the only condition where the visibility allows the driver to see far enough 

to brake  before the obstacle is on straight line during day times, the probability 

𝑃(𝑉|𝐴) correspond to 𝑝𝑌:  

𝑃(𝑉|𝐴) =  33.72% ∈ [29.97%;  37.47%]    (11) 

 

Moreover :  

𝑃(𝑛𝑉|𝐴) = 1 − 𝑃(𝑉|𝐴)  ⇒ 𝑃(𝑛𝑉|𝐴) =  66.28% ∈ [62.53%;  70.03%]  

 Curved line (C) Straight line (nC) 

Night time (N) 𝑝𝑍′ = 15.55%  𝑝𝑊′ = 22.09% 

Day time (nN) 𝑝𝑋′ = 28.64% 𝑝𝑌′ = 33.72%  
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We are now able to retrieve the information that is of interest for us : P(R) 

5.4 Computation 

In the previous sections we collected the following information :  

 

𝑃(𝑉) = 41.55% 𝑎𝑛𝑑 𝑃(𝑛𝑉) = 58.45%     (12) 

𝑃(𝑉|𝐴) =  33.72% ∈ [29.97%;  37.47%]    (13) 

𝑃(𝑛𝑉|𝐴) =  66.28% ∈ [62.53%;  70.03%]    (14) 

 

We use (2) to compute a middle value and an interval for P(R|V) :  

 

Mid P(R|V) : 

𝑚𝑖𝑑(𝑃(𝑉|𝐴)) = 33.72% 𝑎𝑛𝑑 𝑚𝑖𝑑(𝑃(𝑛𝑉|𝐴)) = 66.28% (15) 

𝑃(𝑅|𝑉) = 1 −
𝑃(𝑉|𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)/𝑃(𝑛𝑉)
= 28.43% 

 

Max P(R|V) : 

𝑚𝑖𝑛(𝑃(𝑉|𝐴)) = 29.97% 𝑎𝑛𝑑 𝑚𝑎𝑥(𝑃(𝑛𝑉|𝐴)) = 70.03% (16) 

𝑃(𝑅|𝑉) = 1 −
𝑃(𝑉|𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)/𝑃(𝑛𝑉)
= 39.80% 

 

Min P(R|V) : 

𝑚𝑎𝑥(𝑃(𝑉|𝐴)) = 37.47% 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑃(𝑛𝑉|𝐴)) = 62.53% (17) 

𝑃(𝑅|𝑉) = 1 −
𝑃(𝑉|𝐴)/𝑃(𝑉)

𝑃(𝑛𝑉|𝐴)/𝑃(𝑛𝑉)
= 15.70% 

 

In other words, drivers can avoid 28.43% ∈ [15.70% to 39.80%] of collisions 

when there is an obstacle on the track in good visibility conditions. If we include all 

conditions, drivers avoid 28.43% * 41.55% = 11.81% of collisions. 

6 Limitations 

The analysis presented in this paper is prone to limitations.  

First of all, one limitation is assuming that the visibility is equally impaired in 

all curves. First the visibility actually depends on the curvature. Secondly, the 

visibility also depends on the surrounding of the track: it will be very limited in a 

forest or mountain or trench area for example, but almost not affected on an open 

plain.  

Another limitation is the descriptions of each category as well as the protocol 

which is used by agents in order to provide this information isn’t provided along with 

the database. This lack of clarity with the protocol can lead to a lack of precision for 

the data. Indeed, for the same accident two agents could provide different categories. 

Names such as “Obstacle / Personal accident & Level crossing” and “Safety / person 
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on track” can be ambiguous and hard to differentiate in the absence of a detailed 

description. This ambiguity is present for other fields since there isn’t any global 

protocol. It’s possible to quote the “beginning time” of the accident which could be 

the time the accident happened or the time the set of actions that led to the action 

started.  

Other low visibility conditions should be considered and not only night 

conditions. For example, in high intensity rain or snow or dense fog, the vision of the 

driver can be highly diminished. These conditions are however not that common in 

the studied region. 

We also didn’t take into account line speeds. When the train travels slower, its 

braking distance is shorter and the driver has more chance to avoid a collision. Lower 

speed lines may have more curves, but also less traffic. 

Finally, the Cerema data used to compare the night conditions proportion to 

accidents happening at night, include high speed trains (HST) in the study. While 

some of the lines that are on display here have HSTs going through them,  there are 

not any high speed lines (HSL) in the accident database provided. Consequently, it’s 

possible that the number of HST going through the lines of the region studied is not 

representative of the proportion of HST studied in the CEREMA data. 

7 Conclusions and Contributions 

This paper aims to analyse accident data to evaluate driver performance under 

operational conditions. The findings suggest that drivers can reduce collisions with 

obstacles when visibility is good, but only by about 30%. 

One explanation is that this can be attributed to the lower speeds of trains in 

certain parts of the regional network, where reduced braking distances allow drivers 

to stop the train before reaching an obstacle. 

Further research should focus on more precise data to refine these conclusions, 

particularly regarding driver detection capabilities in different operational contexts 

(e.g. high-speed vs. regional trains). Additionally, obstacle avoidance is not the only 

driver action that can mitigate accidents. Even a delayed emergency braking can 

reduce the severity of an accident by lowering the collision speed and reducing the 

train's post-collision speed, thereby decreasing the risk of derailment. 

For the safety certification of autonomous train systems, emphasis should be 

on a high integrity collision detection and an obstacle detection at longer ranges that 

is at least as good (GAME) as a human driver, in order to reduce speed at impact. But 

considering that human drivers can’t avoid all obstacle collisions, expectations for 

autonomous trains should be set accordingly reasonably. 

Future work should also address the assumptions made in this study. While 

hypotheses 1, 2, and 3 appear reasonable, they need to be validated through rigorous 
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research. For hypothesis 3 (P(nR|nV) = 1), a survey of drivers could provide insights 

into obstacle detection in curves and at night. For hypothesis 2, a comprehensive 

database could confirm that P(I | V) = P(I | nV). Finally, hypothesis 1 requires 

quantification of events leading to collisions with obstacles to determine if factors 

other than human vision significantly impact the results observed. Future studies will 

be dedicated to validating these hypotheses. 
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Annex 

1  Description of the categories and fields 

 

Name of the event Description 

Animals / hoist An hoist animal was hit by the train 

Animals / hit wild animals A wild animal was hit by the train 

Obstacle / Personal accident & Level 

crossing 

A pedestrian or a person in a vehicle was hit 

at a level crossing 

Obstacle / tree The train hit a tree 

Obstacle / other  The train hit an obstacle of another category 

than those described in this document 

Obstacle / branch in the catenary The train hit a branch in the catenary 

Obstacle / fall of rock A rock fell on the running train 

Obstacle / Collision with a bridge  The train hit a bridge 

Obstacle / fire on the outskirts or on the way  A fire is present on the outskirts or on the 

way when the train pass 

Obstacle / vehicle on the track The train hit a vehicle on the track 

Safety / stone throw & projectile shot The train was hit by stone throw or projectile 

shot 

Safety / voluntary obstacle on the track The train hit an obstacle outside of the 

categories described here, voluntary placed 

on the tracks 

Safety / person on the track or suicidal The train hit a person on the track which 

could have been suicidal 

Table 4 : description of the categories of accident 
 

 

Name of the field Description 

Beginning time  Time at which the accident happened 

End time  Time at which the line was cleared and the 

operations could restart without problems  

Line number  Line number of the line on which the 
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accident happened 

Kilometre The kilometre of the line on which the 

accident happened 

Classification  The category of the accident (among the one 

in table 2) 

Ressources The nature of the obstacle 

Causes The cause of the accident 

Table 5 : Description of the fields of the accidents 
 

2  Methodology used to compute night runs and curves 

There are a lot of parameters that can influence human obstacle detection such 

as, level of fatigue and attention, time of reaction, other tasks or speed of the vehicle. 

But above all these factors, visibility is, by far, the most important. Indeed, if an 

obstacle cannot be seen a human driver has no chance of avoiding it. Two parameters 

can alter the visibility of the obstacle, its obstruction and the luminosity level of the 

environment. The assumption is made that by far the main cause of obstruction is 

curvature of the railway and the main cause of low visibility is the lack of sunlight 

(e.g. night vs day).  

 

Every accident in this dataset has a time of beginning, a time of ending, a line 

and a kilometre point. Using this information, the purpose of this section is to find out 

if the accident happened at night and in a curve. 

 

In order to know if the accident was in a curve, its position relative to the line 

but also the other point of the lines have to be known. The first information is given 

by the accident dataset and the second is coming from the railway operator’s open 

datasets. The one used here is the dataset called “Ligne par type” which provides a 

list of every line of the network, their type and their points coordinates. For every 

point coordinates, a radius of curvature is calculated as well as the kilometre point. If 

the radius of curvature is over a threshold of 10 km we consider the point in a curve. 

To compute the radius of curvature of a point, the point itself is considered (P2) as 

well as the two farthest points under 400 m in both directions (P1 and P3). The point 

of intersection of the perpendicular bisector of the segment P2P3 and P1P2 is localised 

in a mercator projection and the distance between this point and the point of interest 

gives the radius of curvature.  
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Figure 6 : Radius of curvature computation  

 

The two thresholds of 400m and 10km were determined by a visual exam 

conducted on various tuples of thresholds. Once every point of the line was analysed, 

for every accident of the line, the farthest point before the accident is considered the 

point at which the accident happened and it’s thus possible to know if an accident 

happened in a curve. 

 

To determine if an accident happened at night, we look whether it happened 

before sunrise or after sunset. We get the sunrise and sunset times from the Suntime 

python library, using the day of the accident and the capital city of the studied region. 

3  Confidence interval computation 

Let’s say we have a sample of n Bernouilli trial X1, X2,..., Xn and we want to build 

a confidence interval for the population proportion p.  

 

Sample proportion : 

The sample mean (sample proportion) p’ is given by : 

𝑝′ =
1

𝑛
× 𝛴𝑋𝑖 

 

Central limit theorem (CLT) : 

For a sufficient large sample n, the sampling distribution of p’ is approximately 

distributed with the mean p (since it’s an estimator of p) and standard error 

𝑆𝐸(𝑝′) = √
𝑝(1−𝑝)

𝑛
 :  

𝑝′ ∼ 𝑁(𝑝, √
𝑝(1−𝑝)

𝑛
 )       (18) 

 

Studi

Points 400 m 
Railw
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Z-score for confidence Interval : 

For a confidence level 1 − 𝛼, the corresponding z-score 𝑧𝛼/2is used. For example, 

for a 95% confidence level, 𝑧0.025 ≃ 1.96 

 

Confidence Interval :  

The formula for the confidence interval for p is :  

𝑝′ ± 𝑧𝛼/2 ⋅ 𝑆𝐸(𝑝′)        (19) 

Substituting the standard error we get :  

𝑝′ ± 𝑧𝛼/2 ⋅ √
𝑝(1−𝑝)

𝑛
        (20) 

4  Frequency and proportion analysis 

Without any post treatment on the lines, it’s possible to use the data that was 

given in order to have an idea of the frequency and proportion of the different 

categories of accident. 
 

 

Figure 7 : Proportion vs Accident type graph 
 

 The proportion of accidents is represented for every accident class in the graph 

above. Three categories seem to appear more than the rest : Animals / hit wild animals, 

Safety /person on the track and Obstacle / Tree. Those results seem to be logical since 

the area crossed by trains can have a high density of humans or forest. Moreover, wild 

animals are not predictable and can act dangerously.  

 

 In order to compute the proportion of accidents we used the total number of 

them over a period of time. We can use the same logic in order to compute the 

frequency of accidents since we know the amount of time those data cover : from 
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January 2022 to January 2024 included. Besides, there are approximately 700 train 

trips a day in the region studied (information provided by the railway operator). We 

make the reasonable assumption that each train makes 5 trips a day (TrainTripPerDay) 

and each trip is 1.5 hours long (TrainTripDuration). With those information, we first 

compute the rate per year for each accident on the network :  

 

𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑌𝑒𝑎𝑟 =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡

𝑌𝑒𝑎𝑟𝐶𝑜𝑢𝑛𝑡
    (21) 

 

 Because there are 700 train trips a day and we made the assumption that each 

train makes 5 trips a day, there are approximately 140 trains (TrainCount) which are 

running constantly in the region’s network. Let’s compute the rate of accident per year 

per train then :  

 

𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑌𝑒𝑎𝑟𝑃𝑒𝑟𝑇𝑟𝑎𝑖𝑛 =
𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑃𝑒𝑟𝑌𝑒𝑎𝑟

𝑇𝑟𝑎𝑖𝑛𝐶𝑜𝑢𝑛𝑡
   (22) 

 

The results for each accident class is presented below :  
 

 
Figure 8 : Rate (per hour) on the network per train vs Accident type 

    

Those results display that for the three most frequent accidents, the rate is 

between 1 accident every 1 or 2 years. In the annexe of the CENELEC EN50126 norm 

“Railway Applications - The Specification and Demonstration of Reliability, 

Availability, Maintainability and Safety (RAMS)”, this corresponds to an 

“occasional” accident (between 1 accident every 1 years to one accident every 10 

years). If the severity of such an accident can be defined, this information can be used 

to measure the risk. 




