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Abstract

Detecting wheelset defects early is crucial for maintaining railway safety. Monitoring
the condition of wheelsets provides ongoing insights into the system’s health, thereby
averting the need for time-consuming and costly periodic inspections. This study
focuses on identifying wheel-flat defects in railway wheelsets using vibration signals
obtained from axle-box measurements. Experimental campaigns were conducted on
a wheelset test bench with defects artificially created. These tests aimed to carry out
a time domain analysis on the vibration signals and detect features that can highlight
the presence and the severity of a wheelset wheel-flat. Subsequently, an experimental
campaign through the employment of sensor nodes was carried out on a Mercitalia
freight train (Car T3000) to validate the obtained results.

Keywords: railway wheelset, wheel-flat, axle-box, vibration measurements, in line,
laboratory experimental tests, sensor node, condition monitoring.
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1 Introduction

The need for detecting and preventing failures in high-risk industries, such as the
railway one, becomes essential to support the system’s operational efficiency and, of
course, human safety. Maintenance, particularly predictive maintenance, plays a vital
role in ensuring railway safety by minimizing failures and costs without compromis-
ing productivity [1]. Unlike Corrective and Preventive maintenance, Predictive main-
tenance needs direct monitoring of the mechanical conditions to process real-time data
and predict possible signs of failure. Instead of relying on routine checks based on fail-
ure models, predictive maintenance schedules tasks as they become necessary based
on equipment condition [2, 3]. Leveraging the Industrial Internet of Things, which
continuously assesses machinery states, offers a proactive, data-driven approach [4]
to identifying problems. This approach helps mitigate risks and eliminates the need
for costly, time-sensitive interventions.

Addressing wheelset defects is crucial in railway condition monitoring discussions,
given their potential to cause severe disturbances and possibly failures. Monitoring of
railway vehicles can happen through sensors installed on the railway infrastructure,
e.g. Wayside Monitoring [5], or through sensors placed on the vehicle itself, e.g. On-
board Monitoring [6]. Exhaustive research, both academic and commercial, is being
carried out focusing on the topic of on-board condition monitoring, as it allows to
rely on algorithms properly tuned for the specific vehicle and can perform contin-
uous analysis. In [7], different approaches to on-board wheel condition monitoring
are investigated, including magnetic, ultrasonic and acoustic techniques. Vibrational
detection techniques are also available, some of them concerning the employment of
axle-boxes acceleration, i.e. ABA, signals: the latter can indeed be considered quite
reliable as they gather vibrational data very close to the possible source of the problem
([8, 9]).

The focus of this work is the identification by means of on-board ABA measure-
ments of a specific wheelset defect, Wheel-flat. Wheel-flat is a wheel geometry profile
defect caused by wheel locking during the breaking process and successive sliding
on the rail. It is one of the most common local surface defects and can cause further
degradation of wheels, bearings suspensions and track with time. The identification
of said defect can be achieved in many ways ([10, 11]), but often by ABA vibration
measurements. Indeed, the presence of a wheel-flat induces in the vertical acceler-
ation a peak value at every complete rotation of the wheel in correspondence of the
angle of rotation for which the wheel-flat is passing through the contact point be-
tween wheel and rail. Liang et al. [12] developed a simplified mathematical model
and a simulation of the wheel-flat and rail surface defects, which were later compared
with experimental results from force and acceleration signals, ABA ones included, of
a roller rig. Time domain features such as Crest Factor, Skewness, RMS and peak
values were tested, coupled with time-frequency techniques as Short Time Fourier
Transform, Wigner-Ville transform and Wavelet Transform. In [13], Bai et al. present
a wheel-flat diagnosis method based on frequency-domain Gramian angular field of
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ABA signals, investigating the frequency domain rather than the time domain.
Most of the existing algorithms for wheel-flat defect identification require a syn-

chronous sample of the acceleration signal, obtained by means of a direct measure of
vehicle speed. This can be obtained with an encoder or from the GPS signal. In [14],
Empirical Mode Decomposition, i.e. EMD, was adopted for wheel-flat detection in
the railway field, while requiring an approximate estimation of the wheel rotational
speed. The issue with this method is that it is costly in terms of computational power,
which represents a problem for on-board sensor specifics. Time-domain detection
methods are definitely more advantageous. Bosso et al. [15] propose to use ABA
measured on vehicles and to analyze it in the time domain to detect wheel-flats. An
algorithm was developed based on the measurement of the vertical acceleration and
tested on numerical simulations and experimental tests. The drawback is that an en-
coder is used to determine the angular position of the wheelset and the algorithm is
designed to work in a nearly constant speed condition. Furthermore, the algorithm
is tested on a Y25 freight train and validated with a maximum speed admissible of
90 km/h with a sampling frequency of 1 kHz.

This paper aims to define a procedure to detect wheel-flat through key features of
ABA signals. The methodology involves extracting time domain features from vibra-
tion signals. Experimental tests are conducted on the Lucchini RS BU300 full-scale
test bench, followed by trials on an operational railway vehicle. The novelty of this ap-
proach lies in its ability to derive wheelset rotational speed directly from acceleration
measurements, bypassing the need for an encoder measurement. This is accomplished
by implementing the Cepstral Analysis, which is performed by reversing the method-
ology proposed by Baasch et al. in [16], aimed at the identification of the wheel radius
from the previously obtained speed.

2 BU300 Experimental Tests

A set of experimental tests is performed, to investigate the sensitivity of the time
domain for the identification of wheel-flat in a real full-scale setting. The experimental
tests were conducted on the BU300 roller rig test bench which is located in Lovere
(BG) Italy at the industrial facility of Lucchini RS. In this section, the test bench
with the measuring set-up is described, along with the tests schedule and the testing
procedure adopted.

2.1 Experimental Set-up

A picture of the BU300 test bench can be seen in Figure 1(a), whilst a technical
scheme is observable in Figure 1(b). On the rig, a full-scale train wheelset is put in
rotation by means of the contact with two disks with a 2m diameter having a profile
similar to the standard UIC60. The two disks are rigidly connected and driven by
a DC motor which allows a maximum peripheral speed of 300 km/h. A set of three
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(a) (b)

Figure 1: (a) The Lucchini RS BU300 full-scale roller rig. (b) The BU300 full-scale
roller rig scheme from [18].

hydraulic actuators impose the vertical and lateral load and four electro-mechanical
actuators are used for the lateral positioning of the wheelset with respect to the rail.
The test bench can reproduce multiple conditions, constant speed, acceleration, and
braking, both on tangent track and in curve conditions. Further information on the
described roller rig and its control system can be found in [17] and in [18]. For the
acquisition, two tri-axial piezoelectric cabled accelerometers are placed in the axle-
boxes, thus both on the right and on the left of the axle. The accelerometers model is
356A06, with a full-scale of 500 g: the three directions of interest (vertical, longitu-
dinal, lateral) are thus acquired without saturation issues.

2.2 Test Conditions

A set of various experimental campaigns was run in order to gather sets of data in
which railway wheelsets were tested in three conditions. In one of them, artificially
created defects were reproduced by means of manufacturing processes.

For wheel-flat investigation, five different conditions were tested, which are listed
in Table 1. They are identified by the length and the width of the defect. From now
on, wheel-flat will be addressed as WF, coupled with a number that identifies its
increasing size. The defect was generated starting from the smallest one, WF1, and
its dimensions were increased each time after an acquisition cycle. An example of
a reproduced wheel-flat can be seen in Figure 2. On the other hand, the label NO

DEFECT indicates a set of data sampled with any kind of defect artificially reproduced
and without any kilometer run beforehand.

The test modality adopted is the same for each tested condition. The full-scale
wheelset at the test bench is put in rotation and the speed is increased up to 100 km/h.
When the regime condition is reached, 5 subsequent acquisitions are started. After-
ward, the speed is increased up to 200 km/h, and again the sampling is carried out.
Eventually, the speed is increased up to 300 km/h, and, after sampling at said speed,
the latter is gradually reduced to 0 and the cycle is over.
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Figure 2: Experimental tests: picture of the reproduced WF3 defect of length 30mm
and depth about 0.05mm

As a consequence, for each defect size, three speeds were tested, 100 km/h, 200 km/h
and 300 km/h. The acquisitions for tests labeled WF2. were damaged, therefore their
data were discarded.

2.3 Defect Identification Features

2.3.1 Raw Data Analysis

Wheel-flat data are analyzed in time domain, since, as previously stated, the presence
of a wheel-flat on the wheel profile generates acceleration peaks in the vertical di-
rection. Figure 3 shows the acquired time histories for WF data, focusing on 1 s of
each signal for each velocity. On the y-axis, there is the vertical direction accelera-
tion. The growing size of the defect corresponds to a significant effect on the vertical
acceleration peaks, and this becomes evident by looking at WF1 versusWF5 time his-
tories. Moreover, the last statement can be considered valid, especially for the signals
measured at 100 km/h.

Defect Name Length [mm] Heigth [mm]

WF1 10 2e-2
WF2 30 2e-2
WF3 30 5e-2
WF4 30 8e-2
WF5 60 8e-2

Table 1: Experimental tests Wheel-flat defects dimensions definition.
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Figure 3: Time Domain Analysis: from NO DEFECT to highest Wheel-Flat WF5 for
increasing speeds (low, medium and high). One second time history, vertical
acceleration signal.

2.3.2 Features Extraction

Features extraction is carried out on the acquired signals according to the following
principle: the acceleration signal contribution related to the presence of the wheel-flat
is periodic with the wheel revolution. The latter concept means that all the information
on the defect is present in the acceleration signal of a single wheel revolution. In a real
case scenario, the same signal contains also components uncorrelated to the presence
of the defect, e.g. track irregularities, which need to be filtered out. To do this, the
knowledge of the rotational speed allows one to cut the single acquisitions in many
sub-windows all correlated to one another. Also, it allows to building a statistically
significant dataset as, from one acquisition, a number multiple of the revolution period,
called fundamental period, is generated.

Each acquisition is cut into windows a fundamental period long. To do this, the
wheel rotational velocity is identified by reversing the algorithm presented in Baash et
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al.[16]: the algorithm takes as an input the known wheel radius and the acceleration
signals and, by computing the cepstrum, it estimates the wheel velocity. The algorithm
is run independently on the three measured directions (longitudinal, lateral, vertical)
and the results are cross-checked to detect anomalies. The output of the cepstral anal-
ysis is considered valid if lying on a ±5% with respect to the nominal speed used on
the test bench acquisitions. If the condition is verified, the results are averaged among
the directions and the final value is assigned to the fundamental period.

Considering the existing literature works, for each window a fundamental period
long, the following time features are computed.

• Root Mean Square, i.e. RMS. It shows the overall mean power of the signal;

• Crest Factor, i.e. CF. It identifies peaks with respect to the RMS. Being an
a-dimensional index, it focuses on the identification of the shape of the signal
itself regardless of its amplitude.

• Wheel-Flat severity Index, i.e. WFI. This index allows quantifying the presence
of peaks in the signal whilst keeping its dependence on the overall amplitude of
the signal and peaks. It is a dimensional index defined in [15].

2.4 Results

For each tested speed (see Subsection 2.2) the extracted features are shown in 2-
dimensional plots: CF vs RMS and WFI vs RMS. Wheel-flat presence is tested by
comparing the signals with absence of defects, i.e. NO DEFECT dataset.

Figures 4(a), 4(b), 4(c) show the 2D features representation CF vs RMS compar-
ing the different levels of wheel-flat with the NO DEFECT condition for each tested
speed. In Figure 4(d), 4(e), 4(f) the same signals are shown using the 2D feature plot
representation WFI vs RMS.

We can see a significant effect caused by the presence of WF. Both representations
are able to catch a significant difference between the NO DEFECT and the most severe
wheel-flat level, WF5. WF4 and WF5 data are quite distinguishable, especially in
Figure 4(a) and Figure 4(d). In any case, a visual inspection of the plots also highlights
how low-speed vertical acceleration signals (100 km/h) are more suitable for wheel-
Flat identification than high-speed ones (300 km/h).

3 In line Experimental Tests

An experimental campaign is carried out by fixing four sensor nodes on a freight train
wagon moving cargo between Verona (Italy), and Hamburg and Cologne (Germany).
The sensors were fixed on the axle-boxes of a Y25 bogie.
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Figure 4: 2D features plot at 100 km/h, 200 km/h, 300 km/h.: CF vs RMS (a, b, c)
and WFI vs RMS (d, e, f). In blue the NO DEFECT data, in green WF1, in
yellow WF3, in red WF4, in black WF5.

3.1 Set-Up

Four nodes have been named and placed as indicated in Figure 5(a). Two of them
were powered by a 12V on-board battery (NODE 2 and NODE 9), recharged by a
wheel hub generator. The remaining two (NODE 4 and NODE 6) were equipped
with photovoltaic panels, i.e. PV, for harvesting solar energy. The nodes were fixed
as shown in Figure 5(b). It is worth adding that NODE 2 and NODE 9 were mounted
on a wheelset which had wheels just reprofiled before the start of the campaign.

3.2 Data Sampling

Vibrational signals in the vertical direction were sampled from the four nodes starting
on November 17, 2022 and ending on February 2, 2023. The nodes were designed to
transmit via GSM every two hours, by capturing the train velocity from a GPS module
mounted on each node. The signals were captured by triaxial accelerometers with a
sampling frequency of 3.3 kHz. Each signal was 7.8 s long. As the employed sensors
were prototypes, some issues occurred due to battery management, GPS connection
(vital for velocity recording) and GSM connection. As a consequence, the totality of
gathered acquisitions can be summarised in Table 2.

For the missing data about the train velocity, the Cepstral method was employed
(refer to Section 2.3.2). As the BU300 experimental tests were carried out at 100, 200,
300 km/h, considering that that maximum velocity of the freight train was 120 km/h,
the velocity within the interval 98 − 102 km/h were included in this analysis. The
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Figure 5: (a) Setup and location of mounted nodes on the train wagon. (b) Field test:
pictures of NODE 2 after mounting.

total considered acquisitions are explained in Table 3.

3.3 Data Analysis

This analysis is carried out with the purpose of capturing differences in the nature of
the signal between field experiments representing realistic operating conditions and
laboratory experiments held in a controlled environment.

3.3.1 Features Extraction and Results

To present a clear comparison, the same procedures described for the laboratory data
were applied to the field database.

For wheel-flat detection, the following time domain features are computed for each
signal and for each time window a fundamental period long (see Section 2.3.2): RMS,
CF, WFI.

Data processing was carried out with two objectives: to understand the validity
of the experimental campaign and to draw a comparison with the experimental data

Node 2 Node 9 Node 4 Node 6

Total# Acq. 738 2815 111 86
No Velocity recorded 148 531 42 29
Zero Velocity Recorded 514 2155 69 53
Recorded Velocity Above Zero 76 129 0 4

Table 2: Statistics about the recorded speed of the acquisitions in the time period
11.17.22− 02.16.23
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Node 2 Node 9 Node 4 Node 6

Velocity Recorded from GPS in the
range

8 18 0 0

Correctly detected by Cepstral Analysis
(GPS comparison)

8 17 0 0

Detected by Cepstral Analysis (NO GPS
comparison)

46 192 17 10

Total extended # Acq. 54 210 17 10

Table 3: Extended field database considering the acquisition with train velocity within
[98, 102] km/h

gathered with the tests performed at the BU300 test bench.
As Axle 4 (see Figure 5(a)) had wheel just reprofiled, data related to NODE 2 and

NODE 9 are hereby showed. By looking at the simultaneous acquisition of the lat-
ter in terms of the mentioned features, the range of features is clustered within the
same range for both nodes with some samples outside of this range. It can be con-
cluded that both nodes are performing similarly. The samples outside of the clustering
range are mostly from the same signals. This can be related to impulses from exter-
nal factors that happen in the signal that cause some windows to have higher feature
values (Figure 6). Furthermore, even though it was expected to notice an increase in
the RMS values over time for increasing wear levels, there was no time trend noticed
in the values of the features so far (i.e. values are not increasing or decreasing with
time). The total distance covered by the train during the whole campaign is not known
but between the 22nd of December and the 14th of February, the train has covered
approximately 20,000 km based on given travel records.

Figure 4(a) and Figures 6(a) and 6(b) represent the CF vs RMS plots of labora-
tory data and field data of the z-axis, sampled at 100 km/h and 98 km/h− 102 km/h,
respectively. The following remarks can be highlighted: by observing the plots, we
can conclude that the majority of the nodes data lie within RMS= [0.5, 2]g, whilst
CF= [2, 5]. Those ranges are considered out of the ranges achieved by any dis-
tinguishable wheel-flat, data which is characterized by having RMS= [4, 7]g and
CF= [3, 7]. Additionally, the range for those features is lower than ranges of NO

DEFECT data, as field data signals being characterized by lower RMS values. The
lower RMS for the field signals is related to a rail-wheel contact that is different from
the experimental setup. Furthermore, it can be noticed that the field data spread on
a range where some of the samples can be classified as Wheel-flat: this phenomenon
is due to the stochastic nature of the field signal, where some windows can have high
feature values due to field outliers.

On the other hand, Figure 4(d) and Figures 6(c) and 6(d) represent the WFI vs
RMS plots of laboratory data and field data of the z-axis, sampled at 100 km/h and
98 km/h − 102 km/h, respectively. For this representation, most of the nodes data
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Figure 6: CF vs RMS plot, node 2 (a) and node 9 (b), and WFI vs RMS plot, node 2
(c) and node 9 (d). Each point in the plot represents a window of the signal.
All points with the same shape and color are windows from the same signal.

lie within CF= [0.5, 5], which is a range far from any distinguishable wheel-flat data,
characterized by having WFI values in the range CF= [7.5, 27.5].

The latest conclusions were expected, considering that the monitored wheelset was
checked and reprofiled before being installed. In addition, given standard working
conditions, no wheel-flat was expected to arise in such a short time.

4 Conclusions

This paper discusses an investigation into identifying Wheel-flat in railway wheelsets
using acceleration measurements obtained from on-board axle-box sensors. Experi-
mental tests on a full-scale wheelset at Lucchini RS BU300 test bench are described,
showing data for different wheel conditions at different speeds. The time domain fea-
tures for the wheel-flat identification are extracted for each window of length equal
to the fundamental period, cut from the original acquisition. To do this, the revolu-
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tion speed is directly computed from the ABA signals through the cepstral analysis,
without the aid of any external device. The identification of wheel-flat presence is
investigated through 2D plots featuring CF vs RMS and WFI vs RMS. The com-
parison with NO DEFECT data leads to the conclusion that WF4 and WF5 are easily
distinguishable, especially as low speed, i.e. 100 km/h. Afterward, an experimental
campaign is carried out on a real-life railway vehicle, where four on-board sensors
are installed on two wheelset axle-boxes: the signals captured within three months are
then studied to capture the differences with the test-bench data at 100 km/h. For their
analysis cepstral analysis was employed, allowing the employment of a great sample
of data even though GPS velocity was not available. Field data, in terms of CF vs
RMS and WFI vs RMS, had values, as expected, out of range of any wheel-flat. The
latest observation was expected, due to outliers and different train-track interaction.
In addition, it was expected that no defect would occur in the passed time frame.

In subsequent phases, experimental trials will be conducted across various vehicle
types to expand the current database and verify the achieved results. Moreover, a
series of experimental tests involving artificially induced defects on an in-line vehicle
will be imperative to compare the features values in the presence of defects.
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