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Abstract 
 

This paper presents an estimation scheme for rail-wheel friction coefficients applying 

a multi-channel deep convolutional neural network on axlebox accelerations. 

Different to conventional approaches, the multi-channel deep convolutional neural 

network does not depend on any slip or creep measurements, nor knowledge of vehicle 

parameters. It is trained using axlebox longitudinal and lateral acceleration 

measurements and known rail friction coefficient measurements obtained from 

running a rail vehicle on friction-modified tracks with five different friction levels at 

four different speeds. The experimental test data includes both straight and curved 

track scenarios, and independent validation data shows that the friction coefficient can 

be very accurately estimated under normal running conditions in almost all of the 

validation data sets. 
 

Keywords: friction coefficient estimation, low adhesion detection, wheel-rail friction, 

convolutional neural networks, railway, condition monitoring. 
 

1  Introduction 
 

Insufficient rail-wheel friction occurs due to contaminations present within the wheel-
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rail interface such as wet-rail or compressed leaves, resulting in poor adhesion 

conditions that leads to critical safety and operational issues. To mitigate the risk of 

wheel spin/slide, global solutions such as the widespread uptake of defensive driving 

are required that result in network wide disruption for potentially localised issues [1]. 

Poor adhesion conditions are costly to the network and also presents a barrier to 

increasing capacity due to their impact on stopping the trains with reliability and 

predictability under various adhesion conditions [2]. These problems show the 

importance of knowing accurate adhesion levels so that adverse effects are minimized 

[3]. 
 

The friction coefficient can be similarly defined as the adhesion/traction coefficient 

𝜇𝑎, which is commonly defined as the ratio between the reactive tangential force from 

the rail to wheel 𝐹𝑐 and wheelset load 𝑄. Maximum 𝜇𝑎 is usually equal to maximum 

kinetic friction coefficient 𝜇 [4], which gives: 
 

 

𝜇𝑎𝑚𝑎𝑥 =
𝐹𝑐𝑚𝑎𝑥

𝑄
≈
𝐹𝑓𝑚𝑎𝑥

𝑁
= 𝜇 (1) 

 

where 𝜇𝑎𝑚𝑎𝑥 and 𝐹𝑐𝑚𝑎𝑥 are the maxima of 𝜇𝑎 and 𝐹𝑐, and 𝐹𝑓𝑚𝑎𝑥 is the maximum 

kinetic friction. In general, estimation of 𝜇 can directly provide the estimation of 

maximum adhesion coefficient 𝜇𝑎𝑚𝑎𝑥 in many contact models [6], and 𝜇𝑎𝑚𝑎𝑥 is the 

crucial safety limiting value that is relevant to a wheel slip or slide. 
 

The friction coefficient depends on a number of factors due to the complex and 

nonlinear interaction between the rail and the wheel, including wheel-rail geometries 

and track irregularities [7], weather conditions [8], surface roughness, and contact 

surface temperature [9]. These factors make adhesion estimation a challenging and 

complex task [5]. 
 

Adhesion/friction estimations can also be achieved by estimations of the 

contact/creep forces, or slip/creepage curves based on some contact or adhesion 

models [5][6]. Kalman filters (KFs), Kalman-Bucy filters (KBFs) are also popular in 

adhesion estimation research. KBFs were used in [10]-[16] to estimate the 

creep/contact forces, and these forces were used to estimate the adhesion levels in 

[10]-[12]. estimation of Examples of unscented KFs (UKFs) used for adhesion 

estimation are given in [17]-[18]. The authors in [19] used a joint-UKF for a friction 

coefficient estimator, however, it requires at least 10 seconds of incoming data to 

reasonably estimate step changes in friction levels. Multi-body physics simulation 

tools can also be used to generate vehicle responses for adhesion estimation [20]. 
 

Applications of machine learning or artificial neural networks (ANNs) for rail 

friction/adhesion level estimations are very few. ANN was first used for adhesion 

estimation in [21], where a recurrent NN (RNN) provided a better estimation than a 

conventional method. A feedforward NN (FNN) was trained and validated in [22] 

with experimental measurements of vehicle speed, wheelset angular speed, and brake 

pressure to accurately estimate the adhesion levels. An FNN is also implemented in 
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[23] as part of a kernel extreme learning machine with radial basis function (RBF) and 

particle swarm optimization to estimate stable and unstable regions of adhesion. An 

FNN estimator was reported in [24] to show that the friction coefficient can be 

accurately estimated using only axlebox longitudinal accelerations and 

vehicle/wheelset speed. All of these estimators use shallow NNs (SNNs) with only a 

single hidden layer, which cannot extract higher level features. Compared to SNNs, 

DNNs provide the capability of higher level feature extraction for classification (or 

regression) [25]. Authors in [26] have designed a multi-layer perceptron (MLP) with 

two hidden layers on seven acoustic features in frequency domain extracted from 

rolling noise in a twin-disk machine for detecting dry and wet conditions at two 

different speeds. The friction coefficient estimation problem can be treated as the 

popular time series classification (TSC) problem. Convolutional neural networks 

(CNNs) are one of the most widely used architecture for TCS, owing to their temporal, 

and spatial-invariance, robustness and relatively shorter training time compared to 

RNNs or MLPs [25]. Nevertheless, there is only a single application of CNN in 

estimation of friction/adhesion coefficients given in [27], where friction coefficients 

for dry and wet conditions were accurately estimated from forward-facing camera and 

vertical railhead images. 
 

Almost all of the adhesion estimations are based on the knowledge of slip, which 

can be subject to significant drift if any velocity term in the slip is obtained by time-

integrating acceleration signals [24]. Therefore, based on the same idea of using only 

axlebox accelerations as in the previous work [24], a multichannel deep CNN (MC-

DCNN) is applied to axlebox accelerations to accurately estimate the friction 

coefficient in this paper. Similarly, the MC-DCNN does not depend on slip/adhesion 

curve, creep force models, or braking commands as in [22]. To apply the convolution 

filters, the 1D time series wheelset accelerations are simply converted to 2D signals 

by stacking overlapping segments of past samples vertically to the current time 

samples. The wheelset acceleration and friction coefficients measurements data are 

from a series of field tests, where an instrumented full-size two-car test vehicle was 

driven on a friction-modified test track under five different friction levels at four 

different running speeds. The MC-DCNNs estimation performance is carried out 

using both longitudinal and lateral axlebox accelerations on straight and curved track 

runs. Independent validation data sets show that the network can accurately and 

consistently estimate the friction coefficients. 
 

2  Method 
 

This section explains the test data used, data processing and architecture of the MC-

DCNN. 
 

2.1 Test data 
 

The test data used was obtained from a series of field tests carried out in an 800-m test 

track facility in Tuxford, where a fully instrumented 2-car multi-purpose vehicle 

(MPV) owned by Network Rail with a pair of four-wheel bogies were driven on the 
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friction-modified track. In addition to the default dry condition, four different friction 

conditions were created by applying industry standard railhead conditioning products. 

Three-axis accelerometers were custom-fit on left and right axleboxes of all four 

wheelsets to measure left and right wheel accelerations. Note that axlebox and wheel 

accelerations are assumed the same. All data was recorded via an onboard data 

acquisition system at a sampling rate of 5120 Hz. Other details of the test procedures 

and creation and measurement of different friction levels are provided in [24][28][29]. 
 

Compared to previous work [24], the data sets now constitutes all available test 

runs carried out at constant speeds for both straight and curved tracks. In addition, the 

validation data sets are selected from totally different test runs, instead of selecting 

different portions of the same test runs as in [24].  
 

Speed 16 mph 26 mph 40 mph 60 mph 

Straight track 

Dry 0.31 0.29 0.31, 0.37 0.3,0.34,0.35  

Friction modifier 0.14,0.17 0.19 0.17 0.16 

Wet 0.161 0.19 0.24, 0.24 0.27 

Detergent 0.18,0.17 0.21 0.17, 0.22  0.24 

Paper tape 0.16,0.2 0.07,0.16,0.22 0.1 0.11, 0.19 

Curved track 

Dry 0.28 0.32 0.31 0.36 

Friction modifier 0.13, 0.26  0.26 0.27 0.27 

Wet 0.35, 0.23 0.19 0.25 - 

Detergent 0.28 0.25, 0.28 0.28, 0.32 0.28 
 

Table 1. Friction levels achieved on the test track for constant speed runs. 
 

The friction measurements for all 50 test runs are tabulated in  

Table 1. The orange coloured friction values represent validation data sets, and the 

rest of the data are used for training. The validation data sets are selected such that 

there is at least one training data for that speed and friction condition, except for the 

case of 60 mph Detergent on the curved track. 
 

 

2.2 Data processing 
 

All data has been downsampled by a factor of 10 to a sampling rate of 512 Hz. This 

was done to reduce both the training time and network size, and it had no effect on 

prediction accuracy. A high-pass filter (HPF) with 0.00005 Hz cut-off frequency is 

then applied, with the very low cut-off frequency removing substantial drift in the data 

that could lead to drifts in the estimations. The HPF also removes the DC offsets in 

the accelerometers. The HPF is followed by a low pass filter (LPF) with 1 Hz of cut-

off frequency to remove high frequency signals that could otherwise lead to 

oscillations in the estimations. 

The N-samples of filtered 1D acceleration signals are then converted into 2D 

signals by stacking a rolling past samples of 0.25 second window vertically at the 
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current samples, which produces N-by-128 dimensional data. Taking a window length 

longer than 0.25 seconds did not improve the estimation results. 
 

The acceleration signals contain positive and negative amplitudes that are not 

necessarily equal. This can be due to the combination of overall vehicle condition, 

nonlinearities, keeper plate modes of vibration, conicity and any asymmetries in mass 

distribution and suspension parameters along each axis, leading to asymmetric 

oscillations. Asymmetric oscillations can also be skewed towards the direction of 

travel, and negatively dominant oscillations can become positively dominant when 

the train is travelling in the opposite direction. To reduce the effect of asymmetries 

and direction of travel, absolute norms are applied to the filtered accelerations, which 

has shown to be important for estimation accuracy. 
 

2.3 Architecture 
 

The MC-DCNN consists of 5 1D convolutional layers (CLs), denoted by CL1, CL2, 

CL3, CL4, and CL5, respectively, each CL followed by a ReLU layer and an average 

pooling layer (APL). The last APL is connected to a fully connected layer (FCL). The 

outputs of each CL are referred as feature vectors (FVs). The ReLU layer helps reduce 

overfitting, while the pooling layer reduces the dimensions of the FVs and the network 

size for faster training and implementation. For inputs, all four wheelset accelerations 

are used because, intuitively, all four wheelset behaviour can contribute to the 

knowledge of friction. Only longitudinal wheelset accelerations were used in [24], but 

here, both longitudinal and lateral wheelset accelerations are used for inputs. The 

architecture of the MC-DCNN is shown in Figure 1, where 𝜇𝑒𝑠𝑡 is the estimated 

friction coefficient, and the ReLU and pooling layers are not shown. Note that the 

inputs are also commonly normalized to [-1,1] for improved training. 
 

 
 

Figure 1: Architecture of the MC-DCNN. 
 

The number of convolution filter heads chosen for all CLs is 15, with a filter length 

3, a stride of 1, and same padding. The APLs have a size and stride of 2, resulting the 

input length of 128 to be halved after each APL. The FVs from the final pooling layer 

is flattened by the FCL, which then connects every element of the FVs to a single 
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neuron, as in an MLP. There are no activation functions in the FCL neurons; they just 

pass the flattened FV elements and multiplies them by a 1D weight matrix and adds a 

bias term to their weighted sum. This was because adding a sigmoid or tanh activation 

function did not improve the estimations. 
 

In the multi-channel CNN, each convolutional filter head also has a number of 

channels of convolution filters that are equal to the number of channels in the previous 

layer. The number of FVs then determines the number of channels in subsequent 

convolutional layers. Thus, the actual number of convolution filters in CLs are 15-by-

16, 15-by-15, 15-by-15, 15-by-15, and 15-by-15, respectively. This gives a number 

of learnable parameters for the network as 3555 including the bias terms. 
 

The size and number of layers of the network was found to be sufficient for all 

speed cases after some training and validation studies. It was discovered that having 

more CLs improved the consistency of the estimations between different networks on 

the validation data. A single network is trained for both straight and curved track since 

there are much less test data for the curved track. In this way, the MC-DCNN can also 

learn common features between both straight and curved tracks, which helps its 

estimation performance on the curved track. 
 

3  Results 
 

To assess the estimation performance, we have recorded both the RMSE and mean 

absolute error (MAE) between the measured and estimated friction coefficients 𝜇 and 

𝜇𝑒𝑠𝑡. The network parameters are initialized randomly, and hence, to reduce the effect 

of random initialization on validation performance, 10 MC-DCNNs were repeatedly 

trained and validated for each speed case, and the average RMSEs, average MAE, and 

the standard deviation (SD) of MAEs from these 10 MC-DCNNs are tabulated in 

Table 2. The table also shows average of �̅�𝑒𝑠𝑡 from 10 MC-DCNNs, where �̅�𝑒𝑠𝑡is the 

mean from a single validation study. 
 

Speed 16 mph 26 mph 40 mph 60 mph 

Straight track 

Measured µ 0.17 0.16 0.17 0.34 

Average µ̅est 0.163 0.175 0.263 0.34 

Average RMSE 0.0097 0.0181 0.0926 0.0082 

Average MAE 0.0095 0.0178 0.0926 0.0081 

SD (MAE) 0.0062 0.0128 0.0083 0.0065 

Curved track 

Measured µ 0.13 0.25 0.32 0.28 

Average µ̅est 0.163 0.263 0.299 0.288 

Average RMSE 0.0339 0.0199 0.0223 0.016 

Average MAE 0.0334 0.0196 0.0223 0.0159 

SD (MAE) 0.0113 0.0159 0.0206 0.0104 
 

Table 2: The average �̅�𝑒𝑠𝑡, average RMSEs, average MAE, and SD of MAEs from 

10 MC-DCNNs on validation data set. 
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Above table shows the MC-DCNN can estimate the friction coefficient accurately, 

except for the case of 40 mph Dry run. The very low SD of MAE means that the 

estimations between these 10 networks are also very consistent, suggesting robustness 

against random parameter initializations. To illustrate the network performance from 

a single validation study, typical estimation performances on the validation data for 

each speed cases are provided from Figure 2 to Figure 5, where the front and back 

sections of the plot show estimations on straight and curved tracks, respectively, that 

are concatenated to show on the same plot. These figures also show that the 

fluctuations in the estimations are small. 

 

 

 

 

 

 
 

Figure 2. Estimation performance of an MC-DCNN at 16 mph. For straight track: 

RMSE=0.0114, MAE=0.0112. For curved track: RMSE=0.0328, MAE= 0.0326. 
 

 

 
 

 

 

 
 

Figure 3. Estimation performance of an MC-DCNN at 26 mph. For straight track: 

RMSE=0.0138, MAE=0.0132. For curved track: RMSE=0.0094, MAE= 0.009. 
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Figure 4. Estimation performance of an MC-CNN at 40 mph. For straight track: 

RMSE=0.0826, MAE=0.0826. For curved track: RMSE=0.0051, MAE= 0.0051. 
 

 
 

Figure 5. Estimation performance of an MC-CNN at 60 mph. For straight track: 

RMSE=0.0017, MAE=0.0014. For curved track: RMSE=0.0016, MAE= 0.0012. 
 

The reason for poor estimation in the case of 40 mph Dry run can be due to the 

selection of the validation data set on this run. This is because it was found that the 

NN performance is slightly different for different validation data sets. 
 

4  Conclusions 
 

This paper has demonstrated that the various friction coefficients of a rail vehicle can 

be accurately estimated using MC-DCNN on axlebox accelerations only, with the 

knowledge wheelset/vehicle speed. The methodology does not depend on specific 

knowledge of creep/adhesion curves, or vehicle models, and is not subject to drift as 

in slip-based estimations. Future work entails investigating the performance of the 

method using different combinations of axlebox acceleration inputs and validation 

data set. 
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