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Abstract 
 

Effective and meticulous management of railway infrastructure is essential to prevent 

accidents and minimize operation and maintenance costs. This requires 

comprehensive knowledge of the assets, their interactions, and the impact of each 

track parameter on the overall performance of the infrastructure. This study conducts 

extensive analyses using a previously calibrated finite element model of slab track, 

varying key track parameters within their typical ranges. The resulting data is then 

used to train and validate predictive models employing machine learning algorithms. 

This approach provides deeper insights and improves the prediction of track behavior, 

which involves numerous variables such as soil/subgrade, supporting layers, sleepers, 

pads, and rails. Additionally, the study considers the impact of train axle loads and 

service speeds, which are crucial factors affecting track performance. The findings 

highlight that the most influential parameters on railway infrastructure are soil 

properties, rail pad characteristics, and axle loads. This research can facilitate the 

implementation of predictive maintenance strategies for railway tracks and the 

development of innovative technological solutions, addressing industrial needs for 

cost reduction and enhancing the competitiveness of railway transport. 
 

Keywords: Railway tracks; Infrastructure assets; Predictive models; Machine 

learning algorithms; Monte Carlo method; Predictive maintenance. 
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1  Introduction 
 

Modern societies demand efficient transport systems for both passengers and 

goods, prioritizing speed, comfort, safety, and environmental sustainability. The 

railway stands out among transportation options due to its high safety, reliability, cost-

effectiveness, and low CO2 emissions [1–3]. To capitalize on these advantages and 

increase railway usage, there has been significant investment in research and 

infrastructure development, particularly in high-speed rail. 

Understanding the behavior of track components and their interactions under 

varying loads and environmental conditions is crucial for optimizing infrastructure 

management and maintenance. Numerous factors affecting railway performance can 

be grouped into train-related loads and frequencies, environmental conditions like 

temperature, and material properties of track components [4–8]. Despite extensive 

research, no comprehensive study currently predicts the overall track response to 

external actions and component interactions. However, advancements in 

computational methods such as FE and Machine Learning (ML) offer new 

opportunities in this area. Recent examples include ML models for predicting 

mechanical behavior and assessing structural responses to different conditions. 

This work aims to analyze four key quantities for assessing dynamic track 

behavior: rail and slab displacements and accelerations. A literature review identified 

variables influencing dynamic behavior, including axle loads, speed, wheel passing 

frequency, wheel-rail contact forces, and environmental temperature in Seville 

(Spain) and Moscow (Russia). Material properties considered include the density, 

Young’s modulus, and Poisson’s ratio of fastening system components, concrete slab 

characteristics, and soil geotechnical properties. 

Using statistical distributions of infrastructure variables, 5400 random samples 

were generated via the Monte Carlo method [9–11]. These scenarios were simulated 

using an experimentally validated FE model [12,13]  to obtain rail and slab 

displacements and accelerations. The resulting datasets were analyzed with ML 

algorithms, including multilinear regression, K-nearest neighbors, decision trees, 

random forest, gradient boosting, and neural networks. The best models for each 

assessment variable were selected and interpreted using permutation importance and 

partial dependence plots, establishing recommended operational ranges for track 

features. 

The remainder of the paper is organized as follows: Section 2.1 defines the FE 

model and material properties, Section 2.2 describes the material properties, Section 

2.3 defines the procedure to generate the syntetic data, and Section 2.4 outlines the 

ML and statistical methods. Section 3 presents the results and analysis, and Section 4 

discusses the interpretation and relevance of the findings.  

 

2  Methods 
 

2.1. FE Model of the track 

 

The FE track model utilized in this study was calibrated using laboratory tests [12,13]. 

Developed with the Harmonic Response module of ANSYS, this dynamic model 
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underwent three key modifications to reduce computational cost. Firstly, symmetry 

conditions were applied, allowing the use of just one-quarter of the original model. 

Secondly, to accommodate the analysis of various fastening systems, the original 

fastening elements (EPDM elastic pad, steel plate, and rubber pad) were replaced by 

a single entity with equivalent mechanical properties. Finally, since the two soil layers 

in the original model (subgrade and frost protection layer) are both compacted sands 

with differing compaction levels, they were merged into one layer with equivalent 

properties. Fig. 1 depicts the final system configuration and the various components, 

with their dimensions detailed in Table 1. 

 

Table 1: Dimensions of the track model 

ID Layer Material 
Width 
[mm] 

Length 
[mm] 

Height 
[mm] 

1 Subgrade + FPL Compacted sand 6000 2200 1200 

3 HBL 
Concrete layer (low 

quality) 
3000 2100 300 

4 Grout Bituminous grout  2550 2100 40 
5 Slab Concrete (HA-35) 2550 1930 200 

6 
Fastening 

system 
EVA / EPDM / TPE 150 160 6 

7 Rail (UIC 60) Steel -- -- --- 

 

 

Fig. 1: Elements of the FE track model 

 

2.2. Material properties 

 

The mechanical properties of the soil, Hydraulically Bonded Layer (HBL), grout, and 

slab were obtained through an extensive literature review, allowing for the estimation 
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of a statistical distribution for each property. For estimating the properties of the 

fastenings, an algorithm designed by Ferreño et al. [14]was used. This algorithm 

estimates the mechanical response of baseplates based on several factors: material, 

temperature, train load, frequency, clamping force (dependent on the condition of the 

fastening), and temperature (historical temperature data from two distinct regions, 

Seville and Moscow was used to analyse this variable). For a more detailed 

explanation of this methodology, please refer to reference [15]. 

 

2.3. Generation of synthetic data 

 

Using the Monte Carlo method [9–11], 5400 random samples were generated to 

represent specific operating conditions. These samples correspond to 5400 distinct 

scenarios, which were then analyzed with the track FE model to determine the 

resulting displacements and accelerations. 

 

2.4. ML Algorithms 
 

The dataset for the ML analysis consists of 5400 samples, each with 27 features (19 

inputs and 8 outputs). The inputs are divided into two categories: 

• Train type-specific variables: train axle load, train speed, wheel passing 

frequency, load amplitude on rail fastening, and forces on inner and outer FE 

fastenings. 

• Track location-dependent variables: city, rail pad material, toe load, city 

temperature, modulus of elasticity (sand, HBL, slab, rail pad), density (sand, 

HBL, slab, seat plate), and Poisson's ratio (sand, HBL, slab). 

The mechanical behavior of the slab track is defined by eight outputs: acceleration 

and vertical displacement at the railhead and sleeper of two segments. 

Data standardization is performed using the StandardScaler algorithm from Scikit-

Learn. The dataset is then split into 75% for training (4049 samples) and 25% for 

testing (1350 samples). Six ML algorithms are used for regression modeling: Logistic 

Regression (LR), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest 

(RF), Gradient Boosting (GB), and Artificial Neural Network (ANN). Model 

performance is evaluated using R2, RMSE, MAE, and MAPE. 

ML algorithms can assess and compare the importance of each variable in predicting 

outcomes. This study uses impurity-based and permutation-based algorithms from 

Scikit-Learn to estimate feature importance. Partial Dependence Plots (PDPs) are 

employed to analyze the effect of each variable on the predicted values. 

 

3  Results 
 

3.1. Variable correlation 

 

In Fig. 2, the correlation matrix is shown. This correlation matrix allows us to check 

for significant linear correlations between the different variables analyzed. From this 

matrix, it was possible to determine that there was a high correlation between some 

of the inputs, leading to the decision to eliminate some variables in the predictive 
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model generation process. Additionally, it was possible to observe a high correlation 

between some inputs and some outputs. This implies that these variables are likely to 

be important for predicting the outputs. 

 

 

 

 

 

  

 
Fig. 2: Correlation matrix 

 

 

In this initial phase of data inspection, another aspect analyzed is the distribution of 

the different outputs. Fig. 3 illustrates, as an example, the distribution of vertical 

displacement values of the slab, showing that this value can range between 0.02 and 

0.14 mm depending on the operating conditions. The following sections define the 

procedure for accurately estimating the various outputs based on the values of the 

operating conditions. 
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Fig. 3: Example of the slab displacement distribution. 

 

3.2. Model calibration 

 

In this section, the objective is to determine which of the trained models with 

optimized hyperparameters provides the most accurate results for data not used in 

training, i.e., the test data. Fig. 4 illustrates the correlation between experimental 

values and the values predicted by the model. Ideally, a 1:1 slope line would indicate 

perfect results. It can be observed that the model's predictions align very well with the 

experimental data, thus validating the model. This allows for proceeding to the next 

step, which involves extracting information from the models (a model has been 

selected for each of the outputs studied). 

 

 
Fig. 4: Example of the correlation between the experimental results and the results 

obtained by the model 
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3.3. Feature importance 

 

Once it was confirmed that a sufficiently accurate predictive model was available, the 

next step was to extract information from it. Firstly, the focus was on identifying the 

most relevant variables for each of the four case studies, one for each output: case 

study 1 (slab displacement), case study 2 (rail displacement), case study 3 (slab 

acceleration), and case study 4 (rail acceleration). Fig. 5 illustrates the importance of 

each variable for each of the case studies. 

 

  
Fig. 5: Importance of each of the variables for each of the models 

 

From Fig. 5, it is clear that for all four case studies, the behavior can be defined based 

on 2 to 4 parameters. These results indicate that the parameters governing the behavior 

of the slab and rail head are the same for both displacements and accelerations when 

the variable Train_speed is included. For the slab behavior, the most influential 

parameters are primarily E_sand and Amplitude. For the rail head behavior, the most 

significant parameters are E_pad, Amplitude, and Toe_Load. 

 

3.4. Partial Dependence Plots 

 

Apart from identifying the most important variables for predicting each of the outputs, 

it is also possible to estimate the influence of each variable across the studied range 

using partial dependence plots. Fig. 6 provides an example of these partial dependence 

plots. 
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Fig. 6: Elements of the FE track model 

 

From Fig. 6, it can be observed that variations in E_sand at lower values result in a 

significantly greater variation in the vertical displacement of the slab compared to 

when E_sand is higher. In fact, for E_sand values above 500, it appears to have no 

significant influence. 
 

4  Conclusions and Contributions 
 

In this study, 5400 simulations of a pre-calibrated FE track model were conducted, 

adjusting each of its 27 features within their typical variation ranges. From these 

simulations, various machine learning predictive algorithms were trained and 

validated, enhancing the understanding of complex track systems. This approach 

aimed to identify key parameters affecting track performance and to plan maintenance 

interventions based on the actual conditions of critical assets. The findings led to the 

following conclusions: 

• Several predictive models were calibrated, with Random Forest (RF) 

performing the best, achieving an R2 consistently above 0.979 and a MAPE 

below 6.23%. 

• The parameters most influencing the vertical displacements of the slab are 

E_Sand and Axle load. 

• The parameters most affecting the vertical displacements of the rail are 

E_PAD, Toe_load, Axle load, and E_Sand. 

• The parameters most impacting the vertical accelerations of the slab are 

Train_Speed, Axle load, and E_Sand. 

• The parameters most influencing the vertical accelerations of the rail are 

E_PAD, Axle_Load, and Train_Speed. 

• The influence of E_Sand and E_PAD is more significant when their values are 

lower. 

The results provide valuable insights into the track features and operating conditions 

most relevant for designing new railway tracks or developing specific predictive 
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maintenance strategies. Additionally, the study identifies parameters that should be 

adjusted if problems arise during the operation of an existing track section. 
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