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Abstract 
 

This research presents a new automated diagnosis methodology for out-of-round 

multi-damage wheels that addresses the damage detection and localization, using only 

acceleration and strain data measured on the railway track. The methodology is based 

on wavelet relative energy and comprises two stages: i) detect damage through the 

wavelet entropy derived from vertical acceleration responses and ii) localize damage 

by mathematically processing wavelet decomposition and using strain responses to 

determine the specific axle location of the detected damaged wheel. The proposed 

methodology is numerically validated for two different types of out-of-round damage 

in railway vehicles, such as polygonal wheels and wheel flats, and for a five-car freight 

train with different damage combinations and localizations. 
 

Keywords: out-of-round (OOR) railway wheels, wayside monitoring system, damage 

detection, damage localization, damage type, multi-damage, machine learning, 

relative wavelet energy. 
 

1  Introduction 
 

In railway engineering, the safety of railway circulation through SHM involves the 

systematic observation and analysis of a vehicle-track system over time through 

regularly sampled response measurements, aiming to detect any changes. Nowadays, 

the condition of railway systems began to be monitored by on-board or wayside 
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approaches, the main difference being the location of the measuring devices. Most on-

board techniques are based on vibration [1], acoustic [2] and ultrasonic techniques [3] 

in which sensors are installed on the vehicle for management of the condition of both 

rolling stock and railway track. On the other hand, wayside systems are a more cost-

effective solution for identifying vehicle defects, since the condition of all wheels is 

indirectly estimated by measuring the responses of in-service trains on the railway 

track [4]. Wayside techniques include strain gauges [5], fiber optic [6], accelerometers 

[7], ultrasonic sensors [8], acoustic emission [9], as well as lasers and high-speed 

cameras [10].  
 

 

The most common wheel defects in railway vehicles are known as out-of-

roundness (OOR), defined as a deviation in the radial profile of the wheel [11]. OOR 

wheels are typically categorized into two types of defects: i) wheel flat, a discrete 

tread defect that results from repetitive wheel/rail abrasion during braking as the 

wheels sliding on the rails [12], and ii) polygonal wheel, which is commonly attributed 

to polygonization [13] and it is characterized by periodic irregularities around the 

wheel circumference deviating from the mean wheel radius. 
 

 

Signal-based approaches for damage diagnosis involve analyzing changes in 

damage-sensitive features derived directly from measured time-series data. Time-

frequency techniques enable the simultaneous analysis of input data records in both 

time and frequency domains [14]. Within this domain, the wavelet transform stands 

out as a highly efficient technique in scientific community for feature extraction [14, 

15]. Some recent studies in the structural engineering field have been using wavelets 

for damage detection and localization with good results [15, 16]. Until now, many 

studies have shown good results in detecting wheel defects using a wayside approach. 
 

 

Although all these works present good results in identifying defective wheels, only 

a few are able to localize the damage, as most studies only address single damages. 

Furthermore, damage localization is not yet robust enough, particularly when it comes 

to considering different types of damage (and not just wheel flats), different types of 

operational scenarios, and different vehicles. Aligned with these assumptions the 

present work proposes a machine learning methodology based on a wayside system 

to detect and localize OOR multiple wheel defects in a railway vehicle. 
 
 

2  Methods 
 

The present section shows the interaction between all steps of the proposed method 

with a brief description of each one. The flowchart presented in Figure 1 illustrates 

the procedure implemented in MATLAB® [17], which is divided into two main stages. 

The first stage, denominated as baseline acquisition, consists of acquiring dynamic 

responses of vehicles with healthy wheels. This procedure should be done with 

different vehicles speeds and train loads to create a baseline of passages that is as 

robust as possible. The second stage analyses new unknow passages and englobes two 

steps: i) damage detection and ii) damage localization.  
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Figure 1: Flowchart of the proposed method. 

 

The feature extraction approach combines two different techniques, a time-

frequency analysis with wavelet relative energy and a Principal Components Analysis 

(PCA). The goal is to achieve damage-sensitive features from the acquired data. 

The wavelet relative energy is calculated due wavelet decomposition of the 

acceleration records, where the first two decompositions of each sensor are fused 

(WI). The characteristics of the acceleration response can be defined by its energy, 

which is one of the measures that characterize the feature of a signal. Inspired by the 

Fourier analysis the energy at decomposition j is defined by [18]: 
 

Ε𝑗 = ∑ |𝐶𝑗(𝑘)|
2𝑘

𝑖=0

           (1) 

Where 𝐶𝑗(𝑘) represents the wavelet coefficients, obtained by Maximum Overlap 

Discrete Wavelet Transform (MODWT) [19]. And the energy at each sampled time 𝑘 

will be: 

 

𝐸(𝑘) = ∑ |𝐶𝑗(𝑘)|
2−1

𝑗=−𝑁

           (2) 

In consequence, the total energy can be obtained by: 
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Ε𝑡𝑜𝑡 = |𝑆|2 = ∑ Ε𝑗
𝑗
𝑖<0

           (3) 

Then, the normalized values, which represent the relative wavelet energy, is defined 

according to: 

 

𝑝𝑗 =
Ε𝑗

Ε𝑡𝑜𝑡
           (4) 

 

Given the relative wavelet energy for j= 1,2, these features are fused with Euclidean 

distance, creating a more representative decomposition, characterized as WI. 

Consequently, the PCA technique is used to extract features from this data. 

Principal component analysis (PCA) is a popular and classic multivariable analysis 

technique used in damage identification, which allows for the reduction of the 

dimensionality of complex data, preserving as much as possible the variations present 

in the data [20]. This technique transforms the original variables into a new set of 

variables, called principal components (PCs), which are linear combinations of the 

original variables. After calculating the principal components, four statistical 

parameters are extracted from the PCA scores, namely, the root mean square (RMS), 

the standard deviation (SD), the skewness and the kurtosis. 

Due this method, the WI acquired on each sensor is reduced to these four features, 

and a Mahalanobis Distance (MD) is computed between baseline scenarios and 

potential damage passages, to fuse the sensors and the features, resulting in a Damage 

Index (DI). Finally, in order to automatically detect the presence of damage on each 

train crossing, an unsupervised approach based on machine learning, called outlier 

analysis, is used. This approach automatically compares the DI values obtained in the 

data fusion stage with a Confidence Boundary (CB), which is calculated using the 

inverse cumulative Gaussian distribution function (ICDF), considering the mean 

value, 𝜇 ̅, and standard deviation, 𝜎, of the baseline feature vector, such as follow: 
 

 

𝐶𝐵 = 𝑖𝑛𝑣𝐹𝑥(1 − 𝛼)

           (5) 

 

Where, 

𝐹(𝑥|�̅�, 𝜎) = 1/(𝜎 ∙ √2𝜋) ∫ 𝑒(−1/2∙((𝑥−�̅�)/𝜎)
2

)𝑥

−𝛼
𝑑𝑦, 𝑥 ∈  ℝ

          (6) 

If the DI is below the CB, it is regarded as a baseline case and is included with the 

other cases to enhance the robustness of the CB. Consequently, when the DI is equal 

to or higher than CB, the feature is an outlier and its transfer for the next step of the 

procedure, damage localization.  
 

The damage localization step is based on the numerical integration of the WI 

associate at each outlier, where the damage zones are emphasized, according to 

sudden transitions along the curve. Even so, the identification of the number of axles 
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acquired from strain responses are also calculated. Consequently, an Axle Location 

Index (ALI) is calculated, based on statistical parameters. Firstly, the data acquired 

from the WI is subjected to a moving standard deviation, in order to highlight the 

areas of the domain where damage occurs. For each WI, made up of N scalar 

observations, the standard deviation T, is defined as: 

 

𝑇 = √
1

𝑁−1
∑ |𝑊𝐼𝑖 − 𝜇|2𝑁

𝑖=1

           (7) 

Where 𝜇 is the mean of 𝑊𝐼, and the obtained vector 𝑇 is integrated through cumulative 

trapezoidal numerical integration. This integration is cross with the total number of 

axles presented in a single passage, acquired from strain responses. The total number 

of axles is achieved by automatically removing outliers from the strain response using 

curve fit techniques, where smooth and exclude data approaches are applied to acquire 

new information representative of the original signal. Firstly, the smooth data 

algorithm, smooths the response data in column vector 𝑦 using a moving average 

filter, resulting on a �̂� vector. Each element of that smooth data response �̂�𝑛 is 

normalized between [-1,1] and the exclude data algorithm returns the values between 

[0,1]. This data processing allows to make a transformation of original strain response, 

where the axles of a passage could be defined as a domain range. 

To achieve the ultimate goal of establishing the number of damages and their 

respective location, a last step is implemented. In each passage, for each axle found, 

the respective integral is evaluated, and the difference between the extreme values of 

the integral is computed. A comparation is established between all the differences 

from a single passage with the average of the differences in all the identified axles, 

which makes it possible to identify the axles that present abnormal discrepancies, thus 

revealing the location and quantification of damages. Due to the differences between 

the sensor positions, a mean is obtained per sensor pair, and the statistical parameter 

mode is applied to quantify the total number of damages and the position of the 

respective damaged axles, resulting in an Axle Location Index (ALI). 
 

3  Results 
 

Based on crossing records, the proposed methodology aims to detect and localize 

OOR damage wheels of a five-wagon Laagrss freight train. As it is not always possible 

to install sensors due to the costs involved, a dynamic interaction analysis between 

the vehicle and the track is implemented, through an in-house software called VSI - 

Vehicle-Structure Interaction. First, the numerical modelling of the train and the track 

is performed in ANSYS® [21], as well as the modelling of the track irregularities and 

OOR defects in MATLAB® [17]. Subsequently, the structural matrices are imported 

and integrated into the VSI software using a fully coupled strategy. More details can 

be found in references [22, 23]. 
 

The virtual wayside monitoring system employs 6 accelerometers and 6 strain 

gauges, installed on the rail at mid-span between two sleepers, as illustrated in Figure 

2. To account for varying sensor sensitivities due to different damage capture levels, 

sensors from the left and right sides are combined. For instance, the first accelerometer 
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and strain gauge on the right, paired with their counterparts on the left, constitute the 

first sensor pair (P1). 
 

 
 

 

 

 
Figure 2: Wayside monitoring system. 

 
 

 

 

Regarding OOR defects, the polygonal defect - P (continuous periodic wear across 

the wheel surface) and flat defect - F (discreet damage), are modelled by transforming 

the wheel defect into an equivalent and spaced rail defect, over which a perfect wheel 

runs, such as also implemented in previous studies [24]. Figure 3 shows the 

differences between these two types of damages. 
 

 

 

 

 
Figure 3: Differences between the two types of OOR damage profiles. 

 
 

 

 

To test the robustness and feasibility of the methodology, different records of train 

crossings were simulated, using different speeds, train loads, localizations and 

combinations of damage (single and multiple damage). All the information on the 

types of scenarios simulated is organized in Table 1. 
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Table 1: Information about simulated scenarios. 

 

For damage detection step, the acceleration responses from each sensor are 

normalized to 5000 domain points to ensure uniform wavelet decompositions. Figure 

4a shows the original acceleration response for a polygonal wheel passage, and Figure 

4b presents the corresponding normalized signal. 
 

 
Figure 4: Acceleration response in A1 from a polygonal wheel: a) original; b) 

normalized. 
 

The normalized data are decomposed into 12 wavelet components using MODWT, 

resulting in relative energy (Figure 5). This figure displays wavelet decompositions, 

for a baseline case (5a) and for a wheel flat damage (5b), from accelerometer number 

1, showing that the signal is gradually decomposed by frequency and amplitude. 

Regarding the damage case, its visible higher relative energies compared to the 

baseline. Furthermore, the decompositions 1 to 5 reveal detailed damage 

characteristics, while decompositions 6 to 12 do not visually indicate damage.  
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Figure 5: Wavelet decompositions from A1 for a passage of a) baseline; b) wheel 

flat. 
 

 
 

This time-frequency domain technique enables the detection of various signal 

changes, principally in the first two relative wavelet energies. These energies are 

selected and fused using the Euclidean distance to highlight different types of 

damages, resulting in a Wavelet Index (WI). Figure 6 illustrates the WI obtained from 

the first pair of accelerometers (P1) for the same damage case shown in Figure 5, 

where the WI amplitude is significantly higher on the damaged side. 
 

 
 

 
Figure 6: WI for a wheel flat damage for P1. 

 

 
 

From WI, PCA features are extracted, and Mahalanobis distance is applied to merge 

the information. After that, the outlier analysis technique is applied to calculate CB. 

The results obtained are presented in Figure 7, showing 96.7% of accuracy, due the 3 

false positives. 
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Figure 7: Automatic OOR damage detection. 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

After identified the damage passages, these outliers are transferred to the next stage 

in the methodology, the damage localization. In this step, the strain responses of each 

true positive outliers are used to determine the existing axles in each passage, 

discarding false positives. Additionally, the input used to extract PCA features, 

characterized by the WI, is approximated to a function enabling the determination of 

their accumulative differential. This operation will facilitate the calculation of axle 

location index (ALI), which is characterized by a number of damaged axles and their 

associated domain range. Figure 8 shows the results for various damage cases, 

obtained from the first pair of sensors (P1). The strain responses and the integral of 

the WI are scaled between 0 and 1 for easier visualization. In all cases, damage is 

clearly visible when assessed using acceleration responses. On the other hand, when 

evaluated in terms of strains, this difference is no longer observed. It is important to 

note that axles are more easily identifiable in the strain records, which are marked by 

red lines in Figure 8. The integration of the WI, represented by the black curve, 

enables automatic damage identification, where the identified axle coincides exactly 

with the sharp variations in the integral. When comparing the integral curve with the 

presence of two defects, the graphical "stairs" effect from wheel flat impact (Figure 

8b) is evident, whereas the polygonal defect (Figure 8a) results in a more uniform 

curve. The same behaviour is visible in the multiple damage cases, as show in Figure 

8c. It should be noted that this procedure is effective regardless of the number of 

existing damages, as the presence of damage will always be indicated by a sudden 

variation in the differential results. 
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Figure 8: Damage localization: a) polygonal wheel; b) wheel flat; c) wheel flat + 

polygonal wheel. 
 
 

 

 
 

 

 
 

 
 

 

Table 2 presents the confusion matrix of the proposed method for the ALI results, 

where axle 0 corresponds to axles not detected. In general, the results proved the 

accuracy of the methodology regarding localization of the damages in each axle for 

the scenarios tested. By analysing Table 2 when the damages are localized in the axle 

1, three misclassification occurs. Furthermore, for scenarios where the damages are 

localized in the axles 2, 3, 5 and 9 only one misclassification are noticed. This 

misclassification can be interpreting as a false negative, given that the damages axle 

was not found. The results show that in the case of multiple closest damages simulated 

on 2nd and 3rd axles, the methodology is not capable of identifying all the damages. In 

polygonal wheels, the methodology presents 100% accuracy, as this is a type of 

continuous defect. Regarding the wheel flat, the position of the vibration’s sensors 

and the position of the flat on the wheel in the moment of crossing can induce 

limitations one the damage localization, so only one of the three passages guaranteed 

the correct ALI. 
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Table 2: Confusion matrix for ALI. 

 
 

4  Conclusions and Contributions 
 

This paper proposes an automatic wavelet relative energy-based methodology for 

multi-damage identification of OOR damage wheels from railway track acceleration 

response. The core of the proposed method involves a numerical cumulative 

integration of wavelet relative energy, where the damage region is clearly visible, and 

the strain response allows determining the specific damaged axle. 
 

Regarding the damage detection phase:  

• only three false positives were observed, and all damage cases were classified; 

• the variability of railway vehicles can be misleading, so a greater amount of data 

and continuous learning of the methodology makes it possible to overcome 

detection flaws.  
 

Looking on the results obtained on the damage localization phase: 

• the accuracy obtained for the axle location index (ALI) was greater than 90% in 

most simulated scenarios, except in the scenarios where the damages were in axle 

2 and 9;  

• based on these results, it is expected that in situations of greater proximity to 

damaged axles, the methodology will have difficulty in counting the damage; 

• in addition to the characteristics of each damage, simulated scenarios were 

included with different severity levels in the same passage. That fact provides a 

simple relationship between damage states, as an effect caused by more advanced 

wear overlaps the early defect, making it less pronounced in the dynamic response.  
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These results demonstrate the immense potential of this new methodology in the 

railway sector, especially regarding infrastructure management. The main challenge 

of this work was to establish the best criteria to localize the damage on the vehicles 

with a wayside monitoring system. Given the difficulty in obtain real train passage 

records, due to the high costs associated with their installation, this methodology was 

validated with numerical models. However, as part of future research, there are plans 

to conduct a dedicated experimental campaign involving vehicles equipped with 

predefined and thoroughly characterized out-of-round (OOR) defects. This 

experimental setup aims to provide precise validation of the methodology proposed 

in this work. 
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