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Abstract 
 

This paper explores the application of machine learning techniques to enhance the 

reliability of sleeper train critical systems contributing to service operation 

disruptions. The primary objective of the paper is to develop predictive models 

capable of identifying and predicting faults to facilitate proactive maintenance. An 

attempt is made to develop and use two machine learning algorithms, Random Forest 

(RF) and Support Vector Machine (SVM), to analyse condition monitoring data and 

predict system failures. An exploratory data analysis was conducted, and some 

limitations and imbalance in the dataset were observed. The Synthetic Minority 

Oversampling Technique (SMOTE) was applied to effectively balance the class 

distribution and improve the model performance. The proposed models were 

evaluated using precision, recall, F1-score, and the overall accuracy metrics. The 

results demonstrated that the Random Forest (RF) model significantly outperformed 

the Support Vector Machine (SVM) model, thereby achieving a well-balanced trade-

off between precision and recall. After addressing data imbalance, the RF model 

achieved an overall accuracy of 75%, compared to 65% accuracy with imbalanced 

data. The precision and recall scores for the RF model indicated reliable performance 

in both fault detection and prediction. In contrast, the SVM model exhibited lower 

performance metrics, especially in identifying faulty incidents, it achieved perfect 

recall but low precision for one class, also indicating many false positives. The SVM 

model on the other hand achieved an overall accuracy of 48% before addressing data 

imbalance, which improved to 70% with balanced data. This paper contribution 
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emphasis on the importance of data quality, feature selection, and model ability in 

handling data imbalance to support decision making.  
 

Keywords: random forest, artificial intelligence, rolling stock, machine learning, 

predictive model, reliability. 
 

1  Introduction 
 

Railway capacity represents a critical aspect of transport infrastructure management 

in Great Britain. The capacity utilisation aspect delineates the upper threshold of 

operability for railway service operations management within a given corridor, 

station, or network [1]. In the most recent quarter, Great Britain saw a bustling rail 

network with a total of 417 million passenger journeys, spanning a significant distance 

of 15.2 billion passenger, and contributing substantially to the economy with a total 

passenger revenue of £2.6 billion [2]. The safety standards are inherent in railway 

operations and extend beyond passengers to encompass the well-being of personnel 

involved in maintenance, logistics, and management, highlighting the multifaceted 

nature of ensuring safe and reliable rail service operations.  

 
 

The rising appeal of sleeper trains for long-distance travel, offer travellers the 

convenience of overnight accommodations and the luxury of a sleeping berth 

throughout the journey, operating predominantly during nighttime hours with a 

distinctively comfortable and immersive travel experience is highlighted by Papa in 

[3]. The MK5 Caledonian Sleeper, a prominent example of such services, operates in 

Scotland, linking London and Scotland destinations. The Scottish Government's 

strategic move to establish the Caledonian Sleeper as an independent franchise 

working towards enhancing the standards and overall experience of overnight rail 

travel and hence delivery passenger satisfaction. However, within the sleeper fleet, 

critical systems such as the water closet system is prone to various defects and failures, 

leading to operational disruptions, passenger inconvenience, and heightened 

maintenance costs. Present maintenance practices are often reactive, resulting in 

suboptimal system performance and downtime. There is need to develop proactive 

maintenance strategies to identify faults early and predict potential failures pre-

emptively. 

 

In railway maintenance, apart from corrective and periodic maintenance strategies, 

predictive maintenance (PdM) is receiving increasing attention because of its ability 

to predict failures, which minimises service interruptions and lowers the number of 

unnecessary inspections [4]. Predictive maintenance has the potential to significantly 

mitigate railway maintenance costs, enhance reliability, and bolster asset availability. 

Sensors play a pivotal role in monitoring process conditions, however, despite the 

implementation of monitoring and control mechanisms, processes can deviate from 

their safe operating parameters due to faults in the overall system. Mou and Zhao [5] 

believe that by using advanced diagnostic techniques such as machine learning 

algorithms and condition monitoring systems, one can proactively identify potential 

faults, minimise downtime, and effectively control costs, thereby fostering a safer and 
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more sustainable operational environment. However, the paper in [6] noticed that this 

trajectory presents considerable challenges for ensuring the stability of trains and 

maintaining the safety performance of railway infrastructure. 

 

Machine learning enables the discovery of precise degradation patterns, facilitates 

the development of predictive models, supports decision-making processes, and 

facilitates the generation of optimized maintenance plans [7]. A notable challenge in 

the railway sector persists wherein a vast volume of data is collected without always 

being effectively transformed into actionable insights. Despite the exponential growth 

in data accumulation, the industry continues to grapple with the absence of automated 

solutions and underutilization of machine learning techniques to address operational 

challenges [8]. 

 

2  Aim and Objectives  

 
The aim of this paper is to demonstrate how an advanced AI and ML model algorithms 

can be utilised to analyse conditioned-based monitoring data to pinpoint defect 

categories of the sleeper train fleet critical systems and use model predictive 

capabilities to forecast potential time of failure for proactive maintenance 

interventions. 

 
2.1 Sleeper Coach Technical Description  

 

The design of the Sleeper Coaches is meticulously crafted to ensure passengers enjoy 

a comfortable and restful overnight journey. These Sleeper Coaches are equipped with 

essential amenities to enhance the onboard experience as shown in Figure 1.  The 

sleeper fleet considered in this paper, the water closet system is prone to various 

defects and failures, leading to operational disruptions, passenger inconvenience, and 

heightened maintenance costs. The maintenance practices conducted is mostly 

reactive interventions, resulting in suboptimal system performance and increased 

downtimes.  

 

 
Figure 1: Sleeper Coach [9] and Toilet [10]. 
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An attempt is made in this paper to develop AI and ML model to analyse condition 

monitoring data to identify faults early and predict potential failures. An exploratory 

analysis of real-time condition monitoring data from the Sleeping Room (SR) and 

Water Closet (WC) system to identify patterns and anomalies indicative of defects. 

 

2.2 Technical information exploratory data analysis 

The analysis detailing the technical intricacies of the water closet system is presented, 

each of the three toilet types incorporates a Fresh water tank (FWT) and a Controlled 

Emissions Toilet (CET) tank, engineered with a high level of resistance to blockages 

stemming from misuse or overfilling. The FWT allows for filling from either side of 

the car using standard connections and is equipped with a manual emptying device. 

Externally visible water level indicators near the filling point and on the Train Control 

and Management System (TCMS) screen enable easy monitoring by train crew. The 

FWT's level sensor delineates five capacity levels (100%, 75%, 50%, 25%, and 0%), 

automatically sending status updates to the crew when levels reach 25% and locking 

the toilet at 5%, signalling its "out-of-use" status. Similarly, the Waste Water Tank 

(WWT) employs a sludge suction mechanism for emptying and features level 

indicators at 80% and 95% capacity. At 95% capacity, the system triggers automatic 

door locking and alerts the train crew, indicating the toilet is "out-of-service." 
 

 

3  Application of Machine Learning in Railway  
 

The accumulation of extensive datasets within the railway sector via condition 

monitoring technology remains futile unless leveraged to extract valuable insights and 

actionable intelligence [11]. 

 

There are two distinct (ML) methodologies, namely the Support Vector Machine 

(SVM) and Random Forest (RF), that are considered in this paper. The efficacy of 

these prediction models can be assessed utilising four distinct statistical metrics, 

including recall, accuracy, precision, and F1-score [12].   

 

Support Vector Machines (SVM) 

 

The Support Vector Machine (SVM) stands as a supervised learning algorithm rooted 

in the principles of statistical learning [13]. Support Vector Machine (SVM) stands as 

a robust machine learning technique renowned for its efficacy in classifying 

observations by delineating an optimal hyperplane within higher-dimensional spaces 

[14]. This technique facilitates the mapping of data to a higher dimensional space, 

thereby enabling linear separation and enhancing the overall flexibility of the model. 

 

Random Forest 

Random Forest is a widely embraced ensemble learning algorithm specifically 

designed for binary classification tasks within the realm of machine learning [15]. 

However, it is crucial to acknowledge that the decision trees employed in constructing 
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the random forest may exhibit limitations such as low classification accuracies or high 

correlations, factors that can impact the overall performance and effectiveness of the 

random forest model [16]. 

 

4  Model Development  
 

The AI and ML models, including supervised learning algorithms, were designed and 

trained to classify defect categories and predict the time of failure. An overview of the 

model development framework is given in Figure 2, where the input data, set 

parameter and input feature for prediction is depicted.   

 

 
Figure 2: A block diagram of the Model Development. 

 

4.1 Model evaluation and validation 

 

The performance and accuracy of the developed models are evaluated through testing 

and validation. This validation process ensure that the models are robust and capable 

of generalising the data and classification. A binary classification approach is used, 

and a 2x2 confusion matrix in Table 1 that looks like this is considered: 

 

 Predicted Positive (P) Predicted Negative (N) 

Actual Positive (P) True Positive (TP) False Negative (FN)  

Actual Negative (N) False Positive (FP) True Negative (TN) 

Table 1: A 2x2 Confusion Matrix. 

• True Positive (TP): The number of instances correctly predicted as positive. 

• True Negative (TN): The number of instances correctly predicted as negative. 

• False Positive (FP): The number of instances incorrectly predicted as positive 

(also known as Type I error). 
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False Negative (FN): The number of instances incorrectly predicted as negative (also 

known as Type II error.  

 

 

4.2 The use of Confusion Matrix 

 

Accuracy Measurement: the accuracy is calculated as the proportion of correct 

predictions (both TP and TN) out of the total predictions using equation (1). 

 

Accuracy =   
TP + TN

TN + TN + FP + FN
 

                                  (1) 

                          

Precision: The proportion of true positive predictions among all positive predictions 

in (2). 

 

Precision =   
TP

TP + FP
 

                                            (2) 

      

Recall (Sensitivity): The proportion of true positive predictions among all actual 

positive instances in (3). 

Recall =   
TP

TP + FN
 

                                   (3) 

      

F1-Score: The harmonic means of precision and recall, providing a single metric for 

model performance. 

 

F1 − Score =  2 ×  
Precision × Recall 

Precision + Recall
 

                           (4) 

 

Specificity: The proportion of true negative predictions among all actual negative 

instances. 

 

Specificity =   
TN

TN + FP
 

                           (5) 

 

4.3 Data Analysis and Visualization 

 

Analysis based on the notification descriptions, highlighting the most frequent defects 

using work plot is shown in the data visualisation in Figure 3.  A systematic approach 

is used to analyse condition monitoring data to enhance Sleeping Room (SR), Water 

Closet (WC) system reliability within the sleeper train fleet. 
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Figure 3: Word plot of various defects 

 

Further investigation and analysis show that the sleeping room-related 

maintenance constitutes the majority, encompassing 68.4% of all reported issues, and 

toilet-related defects at 31.6%. These percentage distributions highlight a significant 

data imbalance, particularly notable in the Toilet category with its minimal ratio. 

 

Addressing such data discrepancies is pivotal, with the addition of more relevant 

data being a recommended approach. Alternatively, leveraging data augmentation 

techniques could serve as a viable alternative in mitigating the challenges posed by 

this imbalance. 

4.4 Handling Data Imbalance 

To address the issue of data imbalance within our dataset, we employed the Synthetic 

Minority Oversampling Technique (SMOTE). The SMOTE generates new synthetic 

instances by interpolating between existing examples, thereby providing a more 

sophisticated and effective solution and the implementation of SMOTE in the study 

is detailed in Figure 4. 

 

Figure 4: Display showing code and solving the data imbalance. 
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Following the data observation, water defects appeared to be the least prevalent 

among reported issues. However, this observation warrants caution as it may be 

influenced by the limited availability of data. The frequency of repairs based on the 

notification dates is given in Figure 5.  

 

It is observed that maintenance notifications occurred during the period spanning 

from 2019-05-27 to 2019-06-06, primarily attributed to sleeping room and toilet-

related defects. This makes sense since these are new trains that was produce around 

2018 according to technical data information. Visualising this data days of the week 

provide further insight into the temporal distribution of maintenance notifications, 

offering a deeper understanding of the patterns and trends within the dataset. 

 
Figure 5: Frequency of repair by dates. 

 

The frequency of repair data in days in Figure 4 show that major maintenances are 

carried out on sleeping rooms related defects for all maintenance days. While the next 

top maintained vehicle defects relate to the toilet system, however, it can be observed 

that there were no records of maintenance on Sunday which is reasonable as most 

maintenance companies are shut on Sundays.  

 

 
Figure 6: Frequency of repair by days. 
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4.5 Random Forest Model Implementation - Without Optimization 

 

The Random Forest model was trained on a dataset split into 80% training and 20% 

testing sets. The classification in Table 3 and Figure 7 show the model performance. 

 
 precision recall f1-score support 

0 0.59 0.91 0.71 11 

1 0.83 0.42 0.56 12 

     

accuracy   0.65 23 

Macro 

average 

0.71 0.66 0.63 23 

Weighted 

avg. 

0.72 0.65 0.63 23 

Table 3: Random Forest Evaluation (Before handling data Imbalance). 

 

  
Figure 7: Visualising random forest result. 

 

 

5  Analysis and Results 
 

The Random Forest model, without any optimization, demonstrates a significant 

difference in its performance between the two classes. Class 0 achieves a high recall 

(0.91), indicating that most positive instances of this class are correctly identified. 

However, its precision is relatively lower (0.59), suggesting a fair number of false 

positives. Conversely, Class 1 exhibits high precision (0.83) but considerably lower 

recall (0.42), meaning the model misses a substantial number of actual positives for 

this class. The overall accuracy of 0.65 reflects these imbalances, which could be 

problematic in scenarios where both classes are equally important.  

 
5.1 Confusion Matrix – Random Forest 

 

The model correctly identified 10 instances of "Sleeping room" and 5 instances of 

"Toilet" as shown in the graph in Figure 8. It misclassified 7 "Toilet" instances as 

"Sleeping room" and 1 "Sleeping room" instance as "Toilet". This indicates a 
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reasonably balanced performance with some misclassification, particularly higher 

false positives for "Toilet". 

 

 
Figure 8: Confusion Matrix–RF. 

 

 

5.2 SVM Model Implementation – Without Optimization 

 

The SVM model was trained on a dataset split into 80% training and 20% testing sets. 

The classification report for the model's performance on the testing in Table 4 

 

 
 precision recall f1-score support 

0 0.48 1.00 0.65 11 

1 0.00 0.00 0.00 12 

     

accuracy   0.48 23 

Macro average 0.24 0.50 0.32 23 

Weighted avg. 0.23 0.48 0.31 23 

Table 4: SVM Evaluation (Before handling data Imbalance). 

 

The SVC model's performance is notably poorer compared to the Random Forest 

model. Class 0 achieves perfect recall (1.00) but low precision (0.48), indicating a 

high number of false positives. Class 1's metrics are particularly concerning, with both 

precision and recall at 0.00, indicating the model fails to identify any positive 

instances of this class. The overall accuracy of 0.48 highlights the model's inability to 

generalize well across both classes. This result suggests that the SVC, without 

optimization, is unsuitable for this imbalanced dataset as shown in Figure 9. 
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Figure 9: Visualising SVM result. 

 

5.3 Confusion Matrix – SVM 

 

The SVM model correctly identified 11 instances of "Sleeping room" but failed to 

identify any instances of "Toilet" as shown in Figure 10. All "Toilet" instances (12) 

were misclassified as "Sleeping room". This shows a strong bias towards predicting 

"Sleeping room" and a failure to correctly classify "Toilet". 

 

 
Figure 10: Confusion Matrix–SVM. 

 

Summary – Without Optimization 

 

The Random Forest classifier outperformed the SVM in terms of overall accuracy, 

precision, recall, and F1-score. This indicates that the Random Forest model is more 

robust and reliable for this application, particularly in handling the imbalance between 

classes. The better performance of the Random Forest model can be attributed to its 

ability to handle large datasets with higher dimensionality and its ensemble nature, 

which reduces the risk of overfitting. On the other hand, the SVM model exhibits 

significant bias and fails to correctly identify any "Toilet" instances, making it 

unsuitable for this classification task without further optimization. 
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To achieve optimal results, it is crucial to address the data imbalance issue within the 

dataset.  

 

 

 

5.4 Comparison of model performance 

 

To ensure a fair and accurate comparison between the models. The confusion matrices 

for the Random Forest and Support Vector Machine (SVM) models in Figure 11 

provide a visual representation of the classification performance of each model on the 

test dataset. The confusion matrices allow us to understand how well the models 

distinguish between the two classes: "Sleeping room" and "Toilet". 

 

 
Figure 11: Confusion Matrix–After handling Data imbalance. 

 

Model Performance Comparison show the following: 

 

1.  Accuracy 

Random Forest: The model correctly classified 75% (15 out of 20) of the test samples. 

SVM: The model correctly classified 70% (14 out of 20) of the test samples. 

2. Precision 

Random Forest: Higher precision in identifying "Sleeping room" due to fewer false 

positives compared to SVM. 

SVM: Slightly lower precision for "Sleeping room" as it misclassified more Toilets 

as Sleeping rooms. 

3. Recall 

Random Forest: Better recall for "Sleeping room" with more true positives. 

SVM: Equal recall for "Toilet" but slightly lower for "Sleeping room". 

4. F1-Score 

Random Forest: Higher F1-score for "Sleeping room" indicating a better balance 

between precision and recall. 

SVM: Lower F1-score for "Sleeping room" reflecting a trade-off between precision 

and recall. 
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6  Conclusions and Contributions  

 

The results demonstrate that the Random Forest classifier is more effective than the 

SVM classifier for this particular problem. The RF model's higher precision and recall 

rates suggest that it is better suited for predicting faults in the WC system. The use of 

SMOTE was crucial in addressing the class imbalance, allowing both models to 

perform better than they would have with the original imbalanced data. The improved 

data handling and model performance indicate that the WC system's reliability can be 

significantly enhanced through the application of machine learning techniques. By 

accurately predicting failures, maintenance can be performed proactively, reducing 

downtime and improving passenger experience. 

 

The study successfully demonstrates the application of AI and machine learning 

techniques to enhance the reliability of the WC system in the MK5 sleeper fleet. The 

Random Forest classifier outperformed the SVM in terms of overall accuracy, 

precision, recall, and F1-score, particularly in handling imbalanced data. This 

superiority can be attributed to its ensemble nature and ability to manage large datasets 

with high dimensionality, which mitigates the risk of overfitting. 
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