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Abstract

Rolling contact fatigue is the first cause of rail degradation. The phenomenon is
deemed random yet depending on many exogenous parameters. Numerical physi-
cal modeling has shown its limits and data modeling had to be introduced. In this
paper, one proposes to show diverse applications of a hybrid model using data and
physics in an industrial context. The data architecture linking physical model, random
forest classification model and survival forest model is quickly exposed. Then some
indicators are proposed to eval the model performance. Three applications are then
developed based on this mixed-model, phenomenon understanding - closely linked
with model validation by expert knowledge -, predictive maintenance scheduling by
rail grinding, and prescriptive maintenance illustrated by fixing the time delay before
the first visit by ultrasound engines.

Keywords: rolling contact fatigue, rail, predictive maintenance, random forest, pre-
scriptive maintenance
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1 Introduction

Repeated passage of train wheels over the rail, with a small contact patch and high
hydrostatic pressure, can lead to the development of cracks on the rail’s surface or
subsurface. This phenomenon, known as rolling contact fatigue (RCF), is the primary
cause of rail degradation. Damages due to RCF, such as squats on the contact table
and head-checks on the contact flange, can propagate and lead to rail fracture. The oc-
currence of rail fractures could have economic (delayed trains, maintenance costs) and
passenger safety (derailment) implications. To avoid this event, the French National
Railway Company (SNCF) applies a strict method with both corrective and scheduled
maintenance strategies which have a high cost for the company.

Improvement on rail manufacturing, track monitoring and maintenance policies
have led to drastically reduce the number of broken rails in the network. Over the last
five years, less than a hundred of breaks appeared each year over the thirty thousand
kilometres of track and thus, twice of rail. Most of breaks appear in non-commercial
track and thus are generally not part of the maintained part of the network. Despite
each defect caused by RCF can lead to a rail break, this is an event too rare to attempt
to predict it. While the currently deployed ultrasonic monitoring system offers good
results for detecting cracks before break, it is not sensitive enough to activate preven-
tive maintenance such as rail grinding. The dreaded event thus slid from rail break to
defect initiation.

Fatigue crack initiation is difficult to predict based on physical models. On one
hand, the phenomenon is sensitive to a large amount of parameters, such as material
crystallography, train load or dynamic stiffness of the track, which are difficult to
consider altogether [1,2]. On the other hand, all these parameters are strongly variable.
Most of these sizes are not systematically measured, such as the contact patch, friction
conditions or local wear, which leads the inherently random fatigue phenomenon, to
appear even more random. Physical models thus show their limits for maintenance
applications.

To tackle this health monitoring problem, data modelling seems more promising.
Several recent studies have shown its performance [3] and the possibility to consider
physics in these models [4]. The present paper develops applications based on a model
previously presented [5], which has been improved by complementary data and mod-
els such as developed in the next section. Three examples of applications are presented
and then discussed. The first is a sensitivity analysis to both validate the model with
expert knowledge and question the impact of various exogenous parameters that have
been added. The second concerns prescriptive maintenance, illustrated by defining the
first time an ultrasound monitoring vehicle should check rail defects. The last appli-
cation is on predictive maintenance, for planning the grinding work on the most risky
segments of the network.
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2 Data & Method

In this section data used and their structure are briefly explained. Most of these data
have been introduced in a previous paper [5] and well described in [3]. The machine
learning model has also been introduced in [6] and is thus shortly developed here.

2.1 Data

Three different types of data have been identified among the available raw data.

• Static properties: Rail linear mass, rail grade, rail age, new or reused, curve
inverse radius, declivity, sleepers types and space, tunnels, substructure type
(ballast or slab track), rail joint. Ambient temperature can also be aggregated as
a static property as shown in [7];

• Time Events: Inspection data (Rail defect first discover) and maintenance work
(rail and/or track renewal, rail local replacement, rail grinding, ballast tamping);

• Usage data:Train load, train type (regional train, high speed train, freight), train
velocity and acceleration, traffic.

Data are aggregated on rail segments with a fixed 108m-length. This value is mo-
tivated by the regular 36m-length of the rail provided by manufacturers and welded in
workshop or on track in case of continuous welded rails (CWR). Taking a congruent
of the latter is, on average, equivalent to having the same number of welds or of rail
joints per segment.

Properties such as linear mass of the rail are averaged if they change along the seg-
ment and punctual informations such as presence of switch & crossing, level crossing
or rail insulated joints are counted. Other informations such as frequency of accelera-
tion of trains are not available and thus indicated as missing values. Models are then
adapted consequently.

With almost 100 000 km of rails (two per track), this segmentation leads to around
1 million segments, which is then increased by the time segmentation.

Time event can be considered in different manners. The rail defect is the supervis-
ing feature and is used to define the failure mode of the rail segment, namely the type
of defect observed. The considered defects are specific to each studies and detailed in
the next section. Maintenance work are separated in two types. The renewal or local
replacement consist of a new (or reused) rail that did not live the history of previous
rail. The rail is thus considered as another segment than the one before this work and
leads to a time segmentation. The last considered works are grinding and tamping. In
this paper, they will be considered as static properties of each rail segment by counting
the number of time each kind of work is done.
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2.2 Models

Two types of data-based models are used and can be combined in these studies, scoring
and survival.

The scoring model is a random forest classifier parametrised with 20 trees and 15
max depth, as developed in [5]. This model has been compared to other usual classi-
fication models and gives, with XGBOOST the best AUC performance (Area Under
Curve), the chosen indicator based on the Receiver Operating Characteristic (ROC)
curves. Random Forest is then preferred over XGBOOST for its better explainability.

The scoring consists on computing η̂(x), which is an evaluation of

η(x) = IP(Y = 1|X = x) (1)

where Y is the state of the segment, 0 if there is no damage, 1 if at least one damage
appear, and x the properties associated with the rail segment. This evaluation does not
indicate any time horizon at which to expect a defect and is only used for quantifying
a risk and compare it to other segments. It is thus good to prioritize works, but not to
quantify the optimal amount of work or periodicity.

The survival forest model, extensively detailed in [6] is an adaptation of decision
trees for Left-Truncated Right-Censored (LTRC) data developped in [8]. Most of rail
segments have more than 30 years and defaults records have been generalised only in
2014 and justify the need of a left-truncated model. On the other side, less than 2% of
rail segments experience recorded defects and right-censored model is thus mandatory.
The performance of survival models are followed by temporal AUC, which is the AUC
computed in classification for different time horizon.

Figure 1: architecture diagram

Physical models are also implemented in the global architecture as shown in figure
1 to aggregate data such as track geometry to produce a more representative indicator
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for data models such as fatigue index or average contact force. In practice these phys-
ical model did not yet enhance the data model performance, mainly because the data
set is already large enough.

3 Applications

Model exploitation is here illustrated with three different examples. As each of them
requests a different configuration of the model, its performance is evaluated systemat-
ically.

3.1 Phenomenon understanding

Objectives

The first application is to get new knowledge on the parameters and combined pa-
rameters that favour defect initiation. It helps to prioritize developments in physics
modeling and can reveal weak signals that sould be considered for new design.

The example developped here is the one discussed in [7]. Ambient temperature has
been recorded at different points of the country and used to interpolate the tempera-
ture around the track with minimum and maximum temperature each day during six
years. The corresponding fatigue damage has been computed by applying Rainflow
counting and Lemaitre & Chaboche cumulative law. A yearly temperature damage is
then associated to each rail segment depending on it’s geographical position. In this
study, only RCF on the contact table are kept, namely, squats.

Model configuration and performance

The objective is to understand and quantify the impact of this added feature to fatigue
phenomena. Survival models are thus not required and one can fully exploit the good
explainability of random forests. The number of kept features has to be minimal
and features have to be uncorrelated. Only 8 features were thus kept, with an AUC
dropping from 0.77 with all features to 0.7. Results are thus consistent.

Results and discussions

Several indicators were calculated to define importance of variables, such as Gini
Index, Permutation Importance or Mean Decrease Impurity or SHappley Additive ex-
Plaination, the last being shown on figure 2. Most of them led to approximately the
same conclusion, the proposed aggregation of cumulative temperature damage is rel-
evant and has a significant impact on squat initiation.

Temperature is empirically considered influent only in extremes. High temperature
increase buckling risk and low temperature favor rail break. But that break generally
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Figure 2: Individual explanation for SHAP importance.

occur on already initiated cracks with a significant propagation. This behavior can
not be extended to the initiation part as shown on Figure 3. Daily variation repre-
sents around 90% of the cumulative damage, compared to seasonal variation. This
observation thus changes the possible levers to reduce RCF defects.

Figure 3: Evolution of damage against day considering variations during the day(blue)
or not (green).
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3.2 Prescriptive maintenance application

Objectives

The second application proposed is for prescriptive maintenance. The example here
is to question the empirically fixed period before the first monitoring of rail cracks
using an ultrasonic measurement vehicle. The current prescriptions are based on UIC
Class, which is an aggregation of two indicators, the maximum speed limit of the track
and the cumulative load called tonnage seen by the track every day [9]. Low index
of UIC corresponds to more critical cases such as high load or high speed. As these
class define a more global way to monitor, maintain and manage all the infrastructure,
from track to catenary, these class are difficult to change. Nonetheless, they can be
questioned by the model.

Model configuration and performance

For survival analysis, the machine learning model is not needed. Data structuration is
still mandatory to be able to compute the survival curves based on the Kaplan Meier
or product-limit estimator,

Ŝ(t) =
∏

i:ti<=t

(
1− di

ni

)
(2)

with ti the distinct times of defects detection, di the number of defects that happened
at time ti, and ni the number of segments without defect up to time ti. The defects
considered here are all defects deemed be detectable by ultrasonic vehicles. The value
of Ŝ(t) is calculated for each UIC group, and the confidence interval represented by
the colored shades is the exponential Greenwood [10] confidence interval.

The current classification is then compared to the model. In this case, all defects
appearing before the start of the test date are used for learning. Classification of most
critical segments is then computed based on random forests over 2 years. Both classi-
fications methods are then compared using the time-AUC as performance indicator.

Results and discussions

Figure 4 shows the survival curves of each UIC groups in different colors. Stars along
these curves correspond to the period after which the first visit by a vehicle equipped
with ultrasonic measurement has to be planned. After that period, a cyclic period
is planned but this cycle is not questioned here since the risk to evaluate is then the
probability of rail break, after crack initiation and propagation, which is not in the
scope of the presented model.

One observes that relative positioning of groups is globally coherent. Two particu-
lar cases can however be noticed. First, UIC 2 survival curve has a specific behavior
compared to other, which can be attributed to the fact that the group, mainly com-
posed of all high speed lines and some very dense lines, is the only one for which the
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cyclic preventive grinding has been strictly applied over the whole time window of the
observed defects. The survival curve thus becomes more flat. The second observation
is for UIC 7 to 9 for which the survival curves go under the other UIC while keeping
their relative position. This behavior is attributed to the reuse of undamaged old rail
from other UIC groups to replace some degradated sections. Maintenance policy has
thus a direct impact on calculated survival curves, showing their relevance.

As of the empirically defined periods indicated by stars, most of them are in the
interval [0.97− 0.99] of the survival curve, with a higher risk for higher index of UIC.
As the crack propagation phase is also directly linked with the total load passing over
the rail, the risk of break is thus increased for lower index of UIC. Previously defined
periods are thus adapted and do not need to be modified.

Figure 4: Survival functions of each UIC groups regarding the RCF defect initiation.

Figure 5 shows the time-AUC of both classification methods, UIC-based or ML-
based. As expected, ML-based classification outperforms UIC-based one with an
AUC over 0.8 for the 24 months of evaluation. But this classification does not consider
practical constraints and highly segments a continuous track, which is not manageable
in monitoring planification. With an AUC always over 0.67, the UIC class based
period definition is thus quite relevant despite not being optimal. Again, changing
this empirically defined monitoring rule would need deeper studies, considering track
continuity and vehicle route, that might not lead to a significant improvement in the
obtained results.
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Figure 5: Comparison of time-AUC performance between the UIC based categoriza-
tion and an optimal ML-based categorization.

3.3 Predictive maintenance application

Objectives

Historically, the dreaded event in the rail is its break. Researches in understanding
fatigue and monitoring the phenomenon led to a good crack detection drastically re-
ducing the rail break risk and making the crack initiation the new dreaded event. In this
context, the new goal is to reduce the corrective maintenance such as rail replacement,
renewal or corrective grinding, by preventive maintenance, mainly by grinding. The
current method is to plan systematic maintenance by cyclic grinding. The goal here is
to improve this maintenance by defining priority and time for each rail segment.

Model configuration and performance

Rail grinding is a maintenance work that concerns only RCF. The three defects consid-
ered are thus the shelling, head checking and squats, which represent together more
than 75% of rail defects. All available features are taken since explainability is not
mandatory here.

The LTRC random forest is used here to predict survival curves of each segments.
Data from all lines are used for the training until the date at which the prediction starts.
As illustrated in the previous section, a threshold has to be fixed to define the date at
which it is most probable to observe the first defect. This threshold is fixed so as to
have a false positive (or false alarm) rate of 20%.

The model is then evaluated on one specific line selected to illustrate the applica-
tion. The prediction performance is evaluated in two ways, the confusion matrix and
the time-AUC.
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Results and discussions

Figure 6 shows the typical results produced for a single track on a line of around
500km length. Predictions were generated every four months over two years. On
the left, one observes that for the first month, the curve is irregular, due to the small
amount of new recorded defects. The performance is very steady over these 2 years
with an AUC around 0.88, computed specifically for that track. The line was selected
for its good performance, mainly due to a long length and good coverage of data in
space and time. To illustrate in practice how it could be handled, the confusion matrix
at the last time step, t=2022-12-31, and shown on the right. For readability, the number
is given in kilometer of rail. If one plans to grind 108km of rail by this time, 83% of
the rail that would have experienced defect initiation during this period would be saved
by grinding. Compared to a typical systematic grinding every two years, 389km of
the track do not need that periodicity, which thus represent a significant maintenance
reduction.

Figure 6: ROC curve (left) and confusion matrix (right)

4 Conclusions & Perspectives

A supervised data-based model has been introduced with its architecture. Its flexibil-
ity in the choice of supervising features and combination of classification or survival
model has been illustrated through three different applications.

• Phenomenon understanding, with the impact of daily temperature variations,

• Prescriptive maintenance, by defining the rule of a first monitoring,

• Predictive maintenance, by prioritizing the order of preventive rail grinding.
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The current models and it’s architecture has thus already several applications. Nev-
ertheless, some improvement with new challenges can be tackled. First, representation
of time events should be improved on the survival model. As an example, the way of
how to consider grinding works and make it appear in the survival curves is not clears.

Moreover, we have seen that physical model did not bring significant gain, except
for temperature consideration. It has however a role to play if extrapolation is con-
sidered. For now, the classification nature of random tree does not allow a robust ex-
trapolation and some other methods have to be investigated, such as transfer learning.
This improvement would unlock new applications that can be useful if innovations are
introduced in the railway system.
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