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Abstract 

 
Detecting damages in railways is essential for ensuring the safety and reliability of 

train operations. This study introduces a methodology for detecting damage in railway 

tracks by employing an onboard monitoring system installed on a freight wagon. The 

methodology proposed here adopts a comprehensive approach involving data 

acquisition, feature extraction, data fusion, and outlier analysis. Initially, data is 

collected using the onboard monitoring system, capturing diverse responses from both 

the axle box and carbody during wagon operation. Subsequently, feature extraction is 

conducted on these acquired responses utilizing continuous wavelet transform 

techniques. Additionally, feature normalization via principal component analysis is 

applied to mitigate environmental and operational variations, enhancing sensitivity to 

damage detection. The Mahalanobis distance is then employed to merge features, 

yielding a damage index for each scenario. Finally, the fused features undergo 

classification using appropriate machine learning algorithms to distinguish between 

undamaged and damaged tracks. This methodology promises to enhance railway 

maintenance practices by offering an automated and dependable approach for 

detecting damages in railway tracks. 

Keywords: machine learning algorithms, onboard condition monitoring, railway 

maintenance, train track interaction, defect detection, continuous wavelet transform 
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1  Introduction 

Railway transportation serves as a backbone for global mobility and commerce, 

facilitating the movement of goods and passengers efficiently and reliably. Central to 

the seamless operation of railways is the integrity of the track infrastructure. However, 

continuous exposure to environmental factors, heavy loads, and dynamic stresses 

inevitably leads to wear, degradation, and potentially dangerous defects in the track 

structure [1]. Timely detection and mitigation of such damages are paramount for 

ensuring the safety, reliability, and cost-effectiveness of railway operations [2]. 

Traditional methods of track inspection primarily rely on manual visual inspections 

or periodic use of specialized equipment, which often prove to be time-consuming, 

labor-intensive, and susceptible to human error. In recent years, the advent of onboard 

monitoring systems integrated with advanced machine learning techniques has 

emerged as a promising solution to address these challenges [3]. By leveraging real-

time sensor data and sophisticated algorithms, these systems can autonomously detect, 

diagnose, and predict track anomalies with unprecedented accuracy and efficiency [4]. 

Previous researchers have employed advanced signal processing techniques to 

mitigate signal interference and diagnose faulty signal patterns indicative of defective 

rails [5-7]. While extensive investigation has focused on detecting infrastructure 

defects [8-11], with a particular emphasis on railways [12, 13], literature specifically 

addressing automatic track defect identification remains limited. Hence, the 

application of artificial intelligence (AI) techniques holds promise for early detection 

of track defects, thereby enhancing safety and reducing operational costs. 

Numerous researchers [14-17] have employed various machine learning 

algorithms to analyze data, establish learning frameworks, and make intelligent 

decisions. These algorithms include artificial neural networks (ANN) [18], 

convolutional neural networks (CNN) [19], and support vector machines (SVM) [20].  

This paper aims to present an application of an unsupervised machine learning 

approach to detect track defects of the rail. The detection methodology comprises four 

steps: (1) feature extraction from the acquired responses using the continuous wavelet 

transform method; (2) feature normalization; (3) data fusion; and (4) damage detection 

by performing an outlier analysis. 

 

 

 

2  Methodology for track damage detection 

Figure 1 illustrates the automatic rail defect detection process using an unsupervised 

learning approach consisting of 5 steps [21-24]: (i) data acquisition, (ii) features 

extraction from acquired responses using a continuous wavelet transform (CWT) 

model, (iii) feature normalization to remove the environmental and operational 

variations (EOVs) by applying a latent-variable method named principal component 

analysis (PCA), (iv) data fusion, through the implementation of a Mahalanobis 

distance, to merge the features from each sensor and enhance sensitivity to detect rail 

defects, and (v) unsupervised feature classification through outlier analyses. 



3 

 

 

 
Figure 1: The framework of the proposed methodology for online track damage 

detection. 

3  Train-Track dynamic interaction modelling  

An in-house software program called VSI-Vehicle-Structure Interaction Analysis is 

utilized for conducting numerical simulations of train-track dynamic interactions, 
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which have been validated and extensively documented in a prior publication [25-

27]. Within this model, the train is interconnected with the track via a 3D wheel-rail 

contact model employing Hertzian theory [28] to calculate normal contact forces and 

the USETAB routine [29] to compute tangential forces arising from rolling friction 

creep. MATLAB® [30] is employed to implement this numerical tool, importing 

structural matrices modeled in a finite element (FE) package for both the vehicle and 

the track. The track is represented within the computer software [31] using beam 

elements for the rails and sleepers, spring-dashpot elements to emulate the behavior 

of flexible layers such as ballast and fasteners, and mass point elements to account for 

the mass of the ballast. The train is also modeled in ANSYS® [31] utilizing a 

multibody formulation, employing spring-dashpot elements to replicate the flexibility 

of the primary and secondary suspension, rigid beams to account for rigid body 

movements, and mass point elements situated at the center of gravity of each body, 

including carbodies, bogies, and wheelsets, to simulate their mass and inertial effects. 

Detailed descriptions of both track and train models are available in the authors' 

previous publications [7, 32]. 

4  Simulation of baseline and damaged scenarios 

4.1. Description 

This study employs a virtual simulation to assess and validate the automatic rail defect 

detection method, both under normal conditions and in scenarios with damage. Two 

distinct types of isolated defects, designated as P1 and P5 (refer to Figure 2) are taken 

into account. The equations representing these defects (depicted in Figure 2) 

incorporate parameters such as k, determining the defect's wavelength; z, representing 

defect's vertical extent; and x, indicating its horizontal length. The investigation 

involves altering the amplitudes and wavelengths of these defects to observe their 

impact on acceleration. Specifically, amplitudes considered in this analysis are chosen 

based on predefined thresholds defined in accordance to the European Standard EN 

13848-5 [33]: alert limit (A=8 mm), intervention limit (A=10 mm), instant action limit 

(A=17 mm), and early detection (A=6 mm). Additionally, corresponding variations in 

wavelet for each amplitude are selected.  

  
P1: 𝑧 = 𝐴𝑒(1/2)(�̅�𝑥)

2
 P5: 𝑧 = 𝐴𝑒−�̅�|𝑥|cos⁡(𝜋�̅�𝑥) 

(a) (b) 

Figure 2: Track defect geometry [34]. 

The acceleration of the vehicle is assessed across 7 sensors shown in Figure 3, 
including various scenarios, for both baseline (undamaged) and damaged conditions 
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to validate the proposed methodology. 4 sensors are installed in the axel box and 3 
sensors are installed in carbody. 
 

 

 
(a) 

 
(b) 

Figure 3: Onboard monitoring system and location of sensors installed on the 

vehicle 

 
Table 1 provides an overview of the 188 simulations conducted for undamaged 

scenarios, that aim at reproducing the vehicle's responses across different speeds and 
rail unevenness profiles. 
 
 

Table 1: Damaged and undamaged scenarios 

 Baseline Scenarios Damaged Scenarios 
 Healthy track Damage P1 Damage P5 

Irregularity profiles 10 1 

Speed 40-120 km/h 75 km/h 
Noise 5% 5% 

Wavelength 3-25 m 5-25 m 15-25 m 

Defect amplitude - 

± 6mm (acceptable) 
± 8mm (warning) 

± 10mm (intervention) 
± 17mm (safety risk) 

Total 188 40 24 
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5  Automatic track defect detection  

5.1 Feature extraction with CWT approach 

The initial phase of the automated damage detection methodology involves extracting 

damage-sensitive features from the dynamic signals. Across 188 baseline and 64 

damage scenarios, three-dimensional feature matrices measuring 252-by-432 are 

obtained for each of the 7 accelerometers (4 sensors installed in the axel box and 3 

sensors installed in carbody). Figure 4 shows 4 features out of 432 for all 252 

scenarios, focusing on the acceleration registered on the axle-box front left. In 

damaged scenarios, simulations 189 to 228 depict the passage of a vehicle through the 

track with an isolated defect referred to as P1, while simulations 229 to 252 depict the 

passage with an isolated defect named P5. 

 
Figure 4. Feature extraction: 4 features out of 432 for all 252 scenarios for the 

accelerations located on the axle-box front left. 

5.2 Feature normalization with PCA 

The normalization process of data is crucial for eliminating the influence of 

environmental and operational factors. Analysis of the CWT-PCA-based features 
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depicted in Figure 4 reveals the complexity of distinguishing defective scenarios from 

healthy ones. This complexity arises due to the influence of environmental and 

operational factors, resulting in subsequent changes in the features. Hence, to mitigate 

these effects and enhance damage sensitivity, it is imperative to appropriately model 

these features. Utilizing the latent-variable method PCA, feature normalization is 

executed. In this stage, a PCA-model-based approach is employed on the CWT-PCA-

based parameters, yielding a new 252×432 matrix of normalized features for each 

sensor. Figure 5 displays the modeled features for all baseline and damage scenarios 

for the accelerometer located on the axle-box front left. During the modeling process, 

the cumulative percentage of variance components exceeding 80% is disregarded, 

leading to the exclusion of 9 rows. These findings demonstrate the successful 

normalization of CWT-PCA-based parameters, effectively reducing operational 

effects while preserving sensitivity to damage. 

 

 

 

 

 
Figure 5. Feature normalization: 4 normalized features out of 432 for all 252 

scenarios for the accelerations located on the axle-box front left. 
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5.3 Data fusion 

In order to merge all 432 CWT-double-PCA-based parameters acquired for each 

sensor, the Mahalanobis distance (MD) method is employed. This approach facilitates 

the transformation of the 432 parameters into a single damage-sensitive feature for 

every sensor and train passage. Consequently, a vector of size 252×1 is generated for 

each of the 7 sensors as the output of this process. Figure 6 illustrates the Mahalanobis 

distance values across all 252 train passages, considering the responses from various 

accelerometers. The outcomes show notable sensitivity to damage, as evidenced by 

the disparity in MDs between the baseline simulations and the damage scenarios. 
 

 
Figure 6. Damage index (DI) for all 252 train passages evaluated by accelerometers 

located at: (a) axle-box front left, (b) car body middle. 

 

5.4 Statistical-based automatic track defect detection 

Figure 7 shows distinct damage behaviors across two intervals, designated as a 

baseline and damaged scenarios, as captured by accelerometers installed in both axle 

box and carbody. The results depicted in this figure show that the methodology is 

capable of detecting all damage scenarios accurately, without any false positives or 

false negatives. An inherent advantage of this approach is its requirement for only a 

single sensor, even one installed in the carbody, to effectively detect a defective wheel. 

Consequently, the proposed methodology offers the benefits of minimizing 

installation costs while enabling a more automated and simplified implementation 

process. These findings underscore the significant potential of this innovative 

application of data mining within the railway industry. 



9 

 

 
Figure 7. Automatic rail isolated defect detection considering the responses from 

accelerometers: (a) axle box front left, (b) car body middle. 

Conclusions and Contributions 
 

The objective of this paper is to develop an unsupervised methodology for detecting 

track defects automatically, particularly focusing on detecting isolated defects at their 

early stage. A significant advantage of this proposed methodology is its ability to 

detect such defects using just one sensor installed in the car body. This streamlined 

approach not only reduces the complexity and cost of the installation system but also 

facilitates a more automated implementation process. Future work will involve 

conducting field trials to further evaluate the effectiveness of the developed 

technology. Additionally, to refine the proposed methodology, it is crucial to develop 

an automatic indicator capable of distinguishing and categorizing track defects based 

on their severity. Such advancements will enhance the practicality and efficacy of the 

methodology in real-world railway operations. 
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